Forecasting Wind Power – Modeling Periodic and Non-linear Effects Under Conditional Heteroscedasticity

نویسندگان

  • Florian Ziel
  • Carsten Croonenbroeck
  • Daniel Ambach
چکیده

In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by periodic B-splines, conditional heteroscedasticity and a complex autoregressive structure with non-linear impacts. In contrast to usually time-consuming estimation approaches as likelihood estimation, we apply a high-dimensional shrinkage technique. We utilize an iteratively re-weighted least absolute shrinkage and selection operator (lasso) technique. It allows for conditional heteroscedasticity, provides fast computing times and guarantees a parsimonious and regularized specification, even though the parameter space may be vast. We are able to show that our approach provides accurate forecasts of wind power at a turbine-specific level for forecasting horizons of up to 48 hours (shortto medium-term forecasts).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method of Short-term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model

In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...

متن کامل

Wind speed forecasting based on autoregressive moving average- exponential generalized autoregressive conditional heteroscedasticity-generalized error distribution (ARMA-EGARCH-GED) model

With the increase of wind power as a renewable energy source in many countries, wind speed forecasting has become more and more important to the planning of wind speed plants, the scheduling of dispatchable generation and tariffs in the day-ahead electricity market, and the operation of power systems. However, the uncertainty of wind speed makes troubles in them. For this reason, a wind speed f...

متن کامل

A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations

Accurate wind power forecasts highly contribute to the integration of wind power into power systems. The focus of the present study is on large-scale offshore wind farms and the complexity of generating accurate probabilistic forecasts of wind power fluctuations at time-scales of a few minutes. Such complexity is addressed from three perspectives: (i) the modeling of a nonlinear and non-station...

متن کامل

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching Space-Time (RST) Method

With the global proliferation of wind power, accurate short-term forecasts of wind resources at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological and statistical expertise to obtain accurate and calibrated, fully probabilistic forecasts of wind speed and wind power. The model formulation is parsimonious, yet takes account of all the salient ...

متن کامل

Using Conditional Kernel Density Estimation for Wind Power Density Forecasting

Of the various renewable energy resources, wind power is widely recognized as one of the most promising. The management of wind farms and electricity systems can benefit greatly from the availability of estimates of the probability distribution of wind power generation. However, most research has focused on point forecasting of wind power. In this paper, we develop an approach to producing dens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016