Harmonic functions of subordinate killed Brownian motion

نویسندگان

  • J. Glover
  • Z. Pop-Stojanovic
  • M. Rao
  • H. Šikić
  • R. Song
  • Z. Vondraček
چکیده

In this paper we study harmonic functions of subordinate killed Brownian motion in a domain D: We first prove that, when the killed Brownian semigroup in D is intrinsic ultracontractive, all nonnegative harmonic functions of the subordinate killed Brownian motion in D are continuous and then we establish a Harnack inequality for these harmonic functions. We then show that, when D is a bounded Lipschitz domain, both the Martin boundary and the minimal Martin boundary of the subordinate killed Brownian motion in D coincide with the Euclidean boundary @D: We also show that, when D is a bounded Lipschitz domain, a boundary Harnack principle holds for positive harmonic functions of the subordinate killed Brownian motion in D: r 2004 Elsevier Inc. All rights reserved. MSC: primary 60J45; secondary 60J75; 31C25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds for Green Functions and Jump- Ing Functions of Subordinate Killed Brow- Nian Motions in Bounded C Domains

In this paper we obtain sharp bounds for the Green function and jumping function of a subordinate killed Brownian motion in a bounded C domain, where the subordinating process is a subordinator whose Laplace exponent has certain asymptotic behavior at infinity.

متن کامل

Minimal thinness with respect to subordinate killed Brownian motions

Minimal thinness is a notion that describes the smallness of a set at a boundary point. In this paper, we provide tests for minimal thinness for a large class of subordinate killed Brownian motions in bounded C domains, C domains with compact complements and domains above graphs of bounded C functions. AMS 2010 Mathematics Subject Classification: Primary 60J50, 31C40; Secondary 31C35, 60J45, 60...

متن کامل

Potential theory of subordinate Brownian motions with Gaussian components

In this paper we study a subordinate Brownian motion with a Gaussian component and a rather general discontinuous part. The assumption on the subordinator is that its Laplace exponent is a complete Bernstein function with a Lévy density satisfying a certain growth condition near zero. The main result is a boundary Harnack principle with explicit boundary decay rate for non-negative harmonic fun...

متن کامل

Two-sided Green function estimates for killed subordinate Brownian motions

A subordinate Brownian motion is a Lévy process that can be obtained by replacing the time of the Brownian motion by an independent subordinator. The infinitesimal generator of a subordinate Brownian motion is −φ(−Δ), where φ is the Laplace exponent of the subordinator. In this paper, we consider a large class of subordinate Brownian motions without diffusion component and with φ comparable to ...

متن کامل

Martin Boundary and Integral Representation for Harmonic Functions of Symmetric Stable Processes

Martin boundaries and integral representations of positive functions which are harmonic in a bounded domain D with respect to Brownian motion are well understood. Unlike the Brownian case, there are two different kinds of harmonicity with respect to a discontinuous symmetric stable process. One kind are functions harmonic in D with respect to the whole process X, and the other are functions har...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003