Construction of bent functions via Niho power functions
نویسندگان
چکیده
A Boolean function with an even number n = 2k of variables is called bent if it is maximally nonlinear. We present here a new construction of bent functions. Boolean functions of the form f(x) = tr(α1x1 + α2x2), α1, α2, x ∈ F2n , are considered, where the exponents di (i = 1, 2) are of Niho type, i.e. the restriction of xi on F2k is linear. We prove for d1 = 2 + 1 and d2 = 3 · 2k−1 − 1, d2 = 2 + 3 if k is odd, d2 = (2 + 5)/3 if k is even, resp., that f is a bent function if α1 + α1 = 1 and α2 = 1.
منابع مشابه
On Dillon's class H of bent functions, Niho bent functions and o-polynomials
One of the classes of bent Boolean functions introduced by John Dillon in his thesis is family H. While this class corresponds to a nice original construction of bent functions in bivariate form, Dillon could exhibit in it only functions which already belonged to the wellknown Maiorana-McFarland class. We first notice that H can be extended to a slightly larger class that we denote by H. We obs...
متن کاملOn lower bounds on second-order nonliearities of bent functions obtained by using Niho power functions
In this paper we find a lower bound of the second-order nonlinearities of Boolean bent functions of the form f(x) = Tr 1 (α1x d1 + α2x 2), where d1 and d2 are Niho exponents. A lower bound of the second-order nonlinearities of these Boolean functions can also be obtained by using a result proved by Li, Hu and Gao (eprint.iacr.org/2010 /009.pdf). It is demonstrated that for large values of n the...
متن کاملNiho Bent Functions and Subiaco/Adelaide Hyperovals
In this paper, the relation between binomial Niho bent functions discovered by Dobbertin et al. and o-polynomials that give rise to the Subiaco and Adelaide classes of hyperovals is found. This allows to expand the class of bent functions that corresponds to Subiaco hyperovals, in the case when m ≡ 2 (mod 4).
متن کاملBent functions and line ovals
In this paper we study those bent functions which are linear on elements of spreads, their connections with ovals and line ovals, and we give descriptions of their dual bent functions. In particular, we give a geometric characterization of Niho bent functions and of their duals, we give explicit formula for the dual bent function and present direct connections with ovals and line ovals. We also...
متن کاملMore PS and H-like bent functions
Two general classes (constructions) of bent functions are derived from the notion of spread. The first class, PS, gives a useful framework for designing bent functions which are constant (except maybe at 0) on each of the m-dimensional subspaces of F22m belonging to a partial spread. Explicit expressions (which may be used for applications) of bent functions by means of the trace can be derived...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006