Tillage, mineralization and leaching: phosphate

نویسندگان

  • T. M. Addiscott
  • D. Thomas
چکیده

Phosphate is usually the limiting nutrient for the formation of algal blooms in freshwater bodies, so tillage practices must minimize phosphate losses by leaching and surface run-off from cultivated land. Mineral soils usually contain 30±70% of their phosphate in organic forms, and both organic and inorganic phosphate are found in the soil solution. Some organic phosphates, notably the inositol phosphates, are as strongly sorbed by soil as inorganic phosphates, and this decreases their susceptibility to mineralization. The strength with which both categories are sorbed lessens the risk of their being leached as solutes but makes it more likely that they will be carried from the soil on colloidal or particulate matter, and the greatest losses of phosphate from the soil usually occur by surface run-off and erosion. Recent studies at Rothamsted have, however, shown substantial concentrations of phosphate in drainage from plots that have long received more phosphate as fertilizer than is removed in crops. These losses probably occurred because preferential water ̄ow carried the phosphate rapidly from the surface soil to the ®eld drains. For lessening losses of phosphate by leaching and run-off, the prime requirement of tillage is that it should encourage ̄ows of water through the soil that help it to retain phosphate. Primary and secondary tillage should ensure that the surface roughness and porosity of the top-soil encourage the ̄ow of water into the soil matrix where it will move relatively slowly and allow phosphate to be sorbed, thereby avoiding problems from run-off and preferential ̄ow. Inversion tillage can be useful for lessening the loss of phosphate by run-off and erosion. Secondary tillage could be used to decrease the size of the aggregates and increase the surface area for sorption. Although tillage will increase the mineralization of organic phosphate, pulses of mineralization are unlikely to be so rapid or to lead to such large losses as with nitrate. The strength with which phosphate is sorbed also lessens the problem. As with nitrate, the key to managing phosphate is basically good husbandry. # 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tillage and N Application Rates Affect on Corn and Soybean Yields and NO 3 -N Leaching Losses

Long-term assessment of NO3-N leaching losses to subsurface drainage "tile" water from different tillage systems and N application rates can help mitigate the environmental concerns of production agriculture. A three-phase field study was conducted to investigate the impact of two tillage systems (chisel vs. no-till) and different N application management systems on flow-weighted NO3-N concentr...

متن کامل

Responses of soil microbial processes and community structure to tillage events and implications for soil quality

The short-term responses of soil microbial processes and community structure to perturbation constitute one aspect of soil quality. Such responses are often associated with an increase in the emissions of greenhouse gases (i.e., CO2, NO, or N2O) and the accumulation and potential loss of nitrate by leaching. Here we describe our recent work on responses of soil carbon and nitrogen dynamics, mic...

متن کامل

Simulating Soil Carbon Dynamics, Erosion and Tillage with EPIC

Carbon sequestration in soil has emerged as a technology with significant potential to help stabilize atmospheric concentrations of greenhouse gases at non-threatening levels. Methods are thus needed to evaluate and recommend soil carbon sequestration practices based on their effects on carbon dynamics and environmental quality. There is scientific and practical consensus that simulation models...

متن کامل

Nitrogen Fertilization of Wheat No-Till Planted in Alfalfa Stubble

The N available after legumes is sufficient for maximum crop yields in many cropping systems. Fertilizing without accounting for the "extra" N mineralized from legume residues can contribute to high nitrate-N concentrations in the soil during crop production and increase nitrate-N leaching potential. Tillage practices also affect the physical, biological, and chemical nature of the soil, changi...

متن کامل

Long – Term Tillage and Manure Effect on Soil Physical and Chemical Properties and Carbon and Nitrogen Mineralization Potentials

The objective of this work was to study the effects of tillage and liquid manure applications on some physical and chemical properties as well as on the carbon and nitrogen mineralization potential of a meadow soil. Our results indicated that tillage and manure applications had no effect on the concentration of Cu, Mn, total N and organic C in 0-15 cm layer of soil after 15 years of treatment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000