Optimizing Mixing in Pervasive Networks: A Graph-Theoretic Perspective

نویسندگان

  • Murtuza Jadliwala
  • Igor Bilogrevic
  • Jean-Pierre Hubaux
چکیده

One major concern in pervasive wireless applications is location privacy, where malicious eavesdroppers, based on static device identifiers, can continuously track users. As a commonly adopted countermeasure to prevent such identifier-based tracking, devices regularly and simultaneously change their identifiers in special areas called mix-zones. Although mix-zones provide spatio-temporal de-correlations between old and new identifiers, pseudonym changes, depending on the position of the mix-zone, can incur a substantial cost on the network due to lost communications and additional resources such as energy. In this paper, we address this trade-off by studying the problem of determining an optimal set of mix-zones such that the degree of mixing in the network is maximized, whereas the overall network-wide mixing cost is minimized. We follow a graph-theoretic approach and model the optimal mixing problem as a novel generalization of the vertex cover problem, called the Mix Cover (MC) problem. We propose three bounded-ratio approximation algorithms for the MC problem and validate them by an empirical evaluation of their performance on real data. The combinatorics-based approach followed here enables us to study the feasibility of determining optimal mix-zones regularly and under dynamic network conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing mix-zone coverage in pervasive wireless networks

Location privacy is a major concern in pervasive networks where static device identifiers enable malicious eavesdroppers to continuously track users and their movements. In order to prevent such identifier-based tracking, devices could coordinate regular identifier change operations in special areas called mix-zones. Although mix-zones provide spatio-temporal de-correlation between old and new ...

متن کامل

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

Some results on a supergraph of the comaximal ideal graph of a commutative ring

Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...

متن کامل

A note on a graph related to the comaximal ideal graph of a commutative ring

  ‎The rings considered in this article are commutative with identity which admit at least two maximal ideals‎.  ‎This article is inspired by the work done on the comaximal ideal graph of a commutative ring‎. ‎Let R be a ring‎.  ‎We associate an undirected graph to R denoted by mathcal{G}(R)‎,  ‎whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R)‎, ‎where J(R) is...

متن کامل

Some results on the complement of a new graph associated to a commutative ring

The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011