Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase.

نویسندگان

  • Nina M Brown
  • Andrew S Torres
  • Peter E Doan
  • Thomas V O'Halloran
چکیده

Oxidative stress leads to the up-regulation of many antioxidant enzymes including Cu,Zn superoxide dismutase (SOD1) via transcriptional mechanisms; however, few examples of posttranslational regulation are known. The copper chaperone for SOD1 (CCS) is involved in physiological SOD1 activation, and its primary function is thought to be delivery of copper to the enzyme. Data presented here are consistent with a previously uncharacterized function for CCS in the SOD1 pathway, namely mediating enzyme activation in response to increases in oxygen tension. Activity assays with pure proteins and cell extracts reveal that O(2) (or superoxide) is required for activation of SOD1 by CCS. Dose-response studies with a translational blocking agent demonstrate that the cellular oxidative response to O(2) is multitiered: existing apo-pools of SOD1 are activated by CCS in the early response, followed by increasing expression of SOD1 protein with persistent oxidative stress. This CCS function provides oxidant-responsive posttranslational regulation of SOD1 activity and may be relevant to a wide array of physiological stresses that involve a sudden elevation of oxygen availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS.

The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) has the distinction of being one of the most abundant disulfide-containing protein known in the eukaryotic cytosol; however, neither catalytic nor physiological roles for the conserved disulfide are known. Here we show that the disulfide status of Saccharomyces cerevisiae SOD1 significantly affects the monomer-dimer equilibrium, the inter...

متن کامل

Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.

Recent studies in Saccharomyces cerevisiae suggest that the delivery of copper to Cu/Zn superoxide dismutase (SOD1) is mediated by a cytosolic protein termed the copper chaperone for superoxide dismutase (CCS). To determine the role of CCS in mammalian copper homeostasis, we generated mice with targeted disruption of CCS alleles (CCS(-/-) mice). Although CCS(-/-) mice are viable and possess nor...

متن کامل

Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli

Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...

متن کامل

Copper Chaperone for Cu/Zn Superoxide Dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc

BACKGROUND Small increases in zinc (Zn) consumption above recommended amounts have been shown to reduce copper (Cu) status in experimental animals and humans. Recently, we have reported that copper chaperone for Cu/Zn superoxide dismutase (CCS) protein level is increased in tissues of overtly Cu-deficient rats and proposed CCS as a novel biomarker of Cu status. METHODS Weanling male Wistar ra...

متن کامل

Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant.

Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 15  شماره 

صفحات  -

تاریخ انتشار 2004