Estimating linear-nonlinear models using Renyi divergences.

نویسندگان

  • Minjoon Kouh
  • Tatyana O Sharpee
چکیده

This article compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramer-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the complexity of estimating Rènyi divergences

This paper studies the complexity of estimating Renyi divergences of a distribution p observed from samples, with respect to a baseline distribution q known a priori. Extending the results of Acharya et al. (SODA’15) on estimating Renyi entropy, we present improved estimation techniques together with upper and lower bounds on the sample complexity. We show that, contrarily to estimating Renyi e...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

A Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...

متن کامل

Estimating the Share and Elasticity of Substitution for Public and Private Health Expenditures in Iran

Background: The rate of substitution for private and public health expenditures is one of the factors that can explain the different effects of public and private health expenditures on health and life expectancy. Therefore, the purpose of this study was to estimate the return to scale, share, and elasticity of the substitution for public and private health expenditures in Iran. Methods: In th...

متن کامل

Better than least squares: comparison of objective functions for estimating linear-nonlinear models

This paper compares a family of methods for characterizing neural feature selectivity with natural stimuli in the framework of the linear-nonlinear model. In this model, the neural firing rate is a nonlinear function of a small number of relevant stimulus components. The relevant stimulus dimensions can be found by maximizing one of the family of objective functions, Rényi divergences of differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Network

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2009