Automatic expert system for weeds/crops identification in images from maize fields

نویسندگان

  • M. Montalvo
  • José Miguel Guerrero
  • Juan Romeo
  • Luis Emmi
  • María Guijarro
  • Gonzalo Pajares
چکیده

Automation for the identification of plants, based on imaging sensors, in agricultural crops represents an important challenge. In maize fields, site-specific treatments, with chemical products or mechanical manipulations, can be applied for weeds elimination. This requires the identification of weeds and crop plants. Sometimes these plants appear impregnated by materials coming from the soil (particularly clays). This appears when the field is irrigated or after rain, particularly when the water falls with some force. This makes traditional approaches based on images greenness identification fail under such situations. Indeed, most pixels belonging to plants, but impregnated, are misidentified as soil pixels because they have lost their natural greenness. This loss of greenness also occurs after treatment when weeds have begun the process of death. To correctly identify all plants, independently of the loss of greenness, we design an automatic expert system based on image segmentation procedures. The performance of this method is verified favorably. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic expert system based on images for accuracy crop row detection in maize fields

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted t...

متن کامل

Automatic detection of crop rows in maize fields with high weeds pressure

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of thre...

متن کامل

Interactions among leguminous trees, crops and weeds in a no-till alley cropping system

Trees improve the soil quality and their rapid growth in the tropics make agroforestry systems potentially effective for establishing low-input agricultural systems in this region. This study assessed the effects of the biophysical interactions among leguminous trees, weeds, cotton and maize in an alley cropping system. The experiment comprised six treatments: Clitoria + Gliricidia; Acacia ...

متن کامل

Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band ...

متن کامل

Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013