Spring constant calibration of atomic force microscope cantilevers of arbitrary shape.

نویسندگان

  • John E Sader
  • Julian A Sanelli
  • Brian D Adamson
  • Jason P Monty
  • Xingzhan Wei
  • Simon A Crawford
  • James R Friend
  • Ivan Marusic
  • Paul Mulvaney
  • Evan J Bieske
چکیده

The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, wh...

متن کامل

Calibration of colloid probe cantilevers using the dynamic viscous response of a confined liquid

Articles you may be interested in Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization Rev. Improved in situ spring constant calibration for colloidal probe atomic force microscopy Rev. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy Rev. A calibration method for lateral forces for use with colloidal probe f...

متن کامل

An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determi...

متن کامل

Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement re...

متن کامل

Note: Improved calibration of atomic force microscope cantilevers using multiple reference cantilevers.

Overall precision of the simplified calibration method in J. E. Sader et al., Rev. Sci. Instrum. 83, 103705 (2012), Sec. III D, is dominated by the spring constant of the reference cantilever. The question arises: How does one take measurements from multiple reference cantilevers, and combine these results, to improve uncertainty of the reference cantilever's spring constant and hence the overa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 83 10  شماره 

صفحات  -

تاریخ انتشار 2012