Classification of Traumatic Brain Injury Patients Using Multi-parametric Automatic Analysis of Quantitative MRI Scans
نویسندگان
چکیده
Traumatic brain injury (TBI) is ranked as the fourth highest cause of death in the developed world. The majority of patients sustain mild TBI, and a significant number suffer persistent neuropsychological problems. Conventional neuroimaging methods (CT, MRI) do not reveal abnormalities consistent with the cognitive symptoms. Imaging methods offering prognostic information in acutely injured patients are therefore required. Here we applied advanced quantitative MRI techniques (T1, T2 mapping and diffusion tensor MRI) in 24 mild TBI patients and 20 matched controls. We applied a support vector machine (SVM) to classify the quantitative MRI data. Univariate classification was ineffective due to overlap between patient and control values, however multi-parametric classification achieved sensitivity of 88% and specificity of 75%. Future work incorporating neuropsychological outcome into SVM training is expected to improve performance. These results indicate that SVM analysis of multi-parametric MRI is a promising approach for predicting prognosis following mild TBI.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملMulti-modal MRI of mild traumatic brain injury
Multi-modal magnetic resonance imaging (MRI) that included high resolution structural imaging, diffusion tensor imaging (DTI), magnetization transfer ratio (MTR) imaging, and magnetic resonance spectroscopic imaging (MRSI) were performed in mild traumatic brain injury (mTBI) patients with negative computed tomographic scans and in an orthopedic-injured (OI) group without concomitant injury to t...
متن کاملارتباط بین غلظت هموگلوبین و مورتالیتی در بیماران ترومای مغزی بستری در بخش مراقبتهای ویژه
Background and Objective: Traumatic brain injury is one of the main causes of mortality and morbidity worldwide and the second leading cause of death in Iran. About half of patients with traumatic brain injury have hemoglobin of less than 9 g/dL during the first week of admission. With regard to the secondary damage to brain tissues caused by anemia and blood transfusion complications, we decid...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010