Mathematical modelling of cancer cell invasion of tissue
نویسندگان
چکیده
The ability to invade tissue is one of the hallmarks of cancer. Cancer cells achieve this through the secretion of matrix degrading enzymes, cell proliferation, loss of cell-cell adhesion, enhanced cell-matrix adhesion and active migration. Invasion of tissue by the cancer cells is one of the key components in the metastatic cascade, whereby cancer cells spread to distant parts of the host and initiate the growth of secondary tumours (metastases). A better understanding of the complex processes involved in cancer invasion may ultimately lead to treatments being developed which can localise cancer and prevent metastasis. In this paper we formulate a novel continuum model of cancer cell invasion of tissue which explicitly incorporates the important biological processes of cell-cell and cell-matrix adhesion. This is achieved using non-local (integral) terms in a system of partial differential equations where the cells use a so-called "sensing radius"R to detect their environment. We show that in the limit as R-->0 the non-local model converges to a related system of reaction-diffusion-taxis equations. A numerical exploration of this model using computational simulations shows that it can form the basis for future models incorporating more details of the invasion process.
منابع مشابه
Mathematical Modelling of Cancer Invasion of Tissue: the Role and Effect of Nonlocal Interactions
In this paper we consider a mathematical model of cancer cell invasion of tissue (extracellular matrix). Two crucial components of tissue invasion are (i) cancer cell proliferation, and (ii) over-expression and secretion of proteolytic enzymes by the cancer cells. The proteolytic enzymes are responsible for the degradation of the tissue, enabling the proliferating cancer cells to actively invad...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملEFFECTS OF MAGNETIC FIELD ON THE RED CELL ON NUTRITIONAL TRANSPORT IN CAPILLARY-TISSUE EXCHANGE SYSTEM
A mathematical model for nutritional transport in capillary tissues exchange system in thepresence of magnetic field has been studied. In this case, the cell is deformed. Due to concentrationgradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Theanalytical method is based on perturbation technique while the numerical simulation is basedon finite difference scheme. R...
متن کاملMiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملshRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines
Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 250 4 شماره
صفحات -
تاریخ انتشار 2008