Surface plasmon modes in graphene wedge and groove waveguides.
نویسندگان
چکیده
Surface plasmon modes at terahertz-infrared waveband in subwavelength graphene wedge and groove waveguides are investigated, which can be categorized into perfect electric conductor and perfect magnetic conductor symmetric modes with different propagation characteristics. The electromagnetic near-fields are localized strongly in different regions for these two kinds of modes. Moreover, these modes can be interpreted by the folded graphene ribbon modes. The brim width of the waveguides and the Fermi energy of the graphene strongly influence the dispersion and propagation distances of the plasmon modes, which can be used for tuning the plasmon modes in graphene wedge and groove waveguides efficiently.
منابع مشابه
Nano plasmon polariton modes of a wedge cross section metal waveguide.
Optical plasmon-polariton modes confined in both transverse dimensions to significantly less than a wavelength are exhibited in open waveguides structured as sharp metal wedges. The analysis reveals two distinctive modes corresponding to a localized mode on the wedge point and surface mode propagation on the abruptly bent interface. These predictions are accompanied by unique field distribution...
متن کاملChannel and wedge plasmon modes of metallic V-grooves with finite metal thickness.
We investigate numerically the effect of a finite metal film thickness on the propagation characteristics of the channel Plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes, both in a symmetric and asymmetric environment. We observe that decreasing the metal thickness results in an improvement of the field localization near the groove tip and an increase of the losses for both types...
متن کاملElectrostatics Modes in Mono-Layered Graphene
In this paper, we investigated the corrected plasmon dispersion relation for graphene in presence of a constant magnetic field which it includes a quantum term arising from the collective electron density wave interference effects. By using quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, the longitudinal plasmons ar...
متن کاملExperimental observation of leaky modes and plasmons in a hybrid resonance element
Related Articles Excitonic diffusion dynamics in ZnO Appl. Phys. Lett. 100, 092106 (2012) Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides AIP Advances 2, 012145 (2012) Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot–metal nanoparticle structures Appl. Phys. Lett. 100, 063117 (2012) Graphene induced tunability of the su...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 26 شماره
صفحات -
تاریخ انتشار 2013