Thin film pc-Si by aluminium induced crystallization on metallic substrate

نویسنده

  • C. Ducros
چکیده

Thin film polycrystalline silicon (pc-Si) on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC) of an amorphous silicon (a-Si) thin film on metallic substrates (Ni/Fe alloy) initially coated with a tantalum nitride (TaN) conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film). Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD). At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001) oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film.

Ultrafast pulsed laser irradiation is demonstrated to be able to produce surface nano-structuring and simultaneous crystallization of amorphous silicon thin film in one step laser processing. After fs laser irradiation on 80 nm-thick a-Si deposited on Corning 1737 glass substrate, the color change from light yellow to dark brown was observed on the sample surface. AFM images show that the surfa...

متن کامل

Metal induced crystallization of amorphous silicon thin films studied by x-ray absorption fine structure spectroscopy

The role of thin metallic layer (Chromium or Nickel) in the crystallization of a-Si film has been studied using X-ray absorption fine structure spectroscopy (XAFS). The films were grown at different substrate temperatures in two different geometrical structures : (a) a 200 nm metal layer (Cr or Ni) was deposited on fused silica (FS) followed by 400 nm of a-Si and (b) the 400 nm a-Si layer was d...

متن کامل

Experimental study of aluminum-induced crystallization of amorphous silicon thin films

This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to the a-Si film at different thicknesses. The samples were annealed for 3 h at different temperatures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013