A feasibility study of magnetic resonance driven electrical impedance tomography using a phantom.

نویسندگان

  • Yuqing Wan
  • Michiro Negishi
  • R Todd Constable
چکیده

Imaging the electrical properties of human tissue may aid in cancer diagnoses or monitoring organ function. Traditionally, the electrical properties are revealed with electrical impedance tomography, where currents are injected into human tissue and voltages are measured on the surface. This paper focuses on a method of measuring the electrical properties using a magnetic resonance (MR) scanner without current injection. In magnetic resonance driven electrical impedance tomography (MRDEIT), the MR phenomenon is used to induce currents in the body and the complex permittivity map is inversely computed from the difference between the modeled electric field and the actual surface electrode measurements. Computer simulations indicate that with noise level under 20%, the contrast is visually discernible in the reconstruction image. A phantom experiment is demonstrated and this supports results from computer simulation studies. The noise level in electrode measurements is evaluated to be approximately 7.8% from repeated experiments, confirming the potential to reconstruct conductivity contrast using MRDEIT. With further improvements in hardware and image reconstruction, MRDEIT may provide an additional contrast mechanism reflecting the electrical properties of human tissue, which may ultimately be used to diagnose a cancer or assist in electroencephalography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast imaging for magnetic resonance electrical impedance tomography.

In magnetic resonance electrical impedance tomography (MREIT), currents are injected into an object, the resulting magnetic flux density is measured using MRI, and the conductivity distribution reconstructed using these MRI data. The relatively long acquisition times of conventional MREIT methods limit the signal averaging rate and are susceptible to motion artifacts. In this study, we reconstr...

متن کامل

Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT).

Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross-sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In thi...

متن کامل

Current Density Imaging Using Directly Measured Harmonic Bz Data in MREIT

Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directly measure the second derivative of Bz data from the measured k-space data, from which ...

متن کامل

Data in MREIT

Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directlymeasure the second derivative ofB z data from themeasured kspace data, from which we ...

متن کامل

XWH - 04 - 1 - 0446 TITLE : Comparison of the Specificity of MR - EIT and Dynamic Contrast - Enhanced MRI in Breast Cancer

In magnetic resonance electrical impedance tomography (MREIT), currents are applied to an object, the resulting magnetic flux density measured using MRI and the conductivity distribution reconstructed using these MRI data. In this study, we assess the ability of MREIT to monitor changes in the conductivity distribution of an agarose gel phantom, using injected current pulses of 900 μA. The phan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological measurement

دوره 34 6  شماره 

صفحات  -

تاریخ انتشار 2013