Development of an Epileptic Seizure Detection Application based on Parallel Computing

نویسندگان

  • K. Sivasankari
  • K. Thanushkodi
چکیده

Epileptic seizure detection in a large database of Electroencephalography (EEG) signals needs to be a time constrained process for real-time analysis. Epileptic seizure detection algorithms are designed to obtain and analyze a group of neural signals and recognize the presence of seizure occurrence. The computational cost of the algorithms should be minimized to reduce the processing time and memory consumption. Automated epileptic seizure detection using optimized feature selection improves the classification accuracy, but it occupies more processing time during the Artifact Removal (AR) stage. So, the execution time is greatly reduced by introducing task parallelism in the artifact removal stage. By harnessing parallel computing the computational overhead and processing time are decreased. An epileptic seizure detection application is developed and analyzed with respect to execution time, speedup, and parallel efficiency. The application was developed in Intel Pentium(R) Dual-core CPU with processor clock rate of 2.60 GHz, memory of 1.96 GB, and operating system of Windows XP Professional Service Pack 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Parallel computing using MPI and OpenMP on self-configured platform, UMZHPC.

Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...

متن کامل

Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier

Analysis of electroencephalogram (EEG) signal is crucial due to its non-stationary characteristics, which could lead the way to proper detection method for the treatment of patients with neurological abnormalities, especially for epilepsy. The performance of EEG-based epileptic seizure detection relies largely on the quality of selected features from an EEG data that characterize seizure activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013