Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg.
نویسندگان
چکیده
The recessive gene rymv-1, responsible for the high resistance of Oryza sativa 'Gigante' to Rice yellow mottle virus (genus Sobemovirus), was overcome by the variant CI4*, which emerged after serial inoculations of the non-resistance-breaking (nRB) isolate CI4. By comparison of the full-length sequences of CI4 and CI4*, a non-synonymous mutation was identified at position 1729, localized in the putative VPg domain, and an assay was developed based on this single-nucleotide polymorphism. The mutation G1729T was detected as early as the first passage in resistant plants and was found in all subsequent passages. Neither reversion nor any additional mutation was observed. The substitution G1729T, introduced by mutagenesis into the VPg of an nRB infectious clone, was sufficient to induce symptoms in uninoculated leaves of O. sativa 'Gigante'. This is the first evidence that VPg is a virulence factor in plants with recessive resistance against viruses outside the family Potyviridae.
منابع مشابه
Alternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints.
The adaptation of rice yellow mottle virus (RYMV) to rymv1-mediated resistance has been reported to involve mutations in the viral genome-linked protein (VPg). In this study, we analysed several cases of rymv1-2 resistance breakdown by an isolate with low adaptability. Surprisingly, in these rarely occurring resistance-breaking (RB) genotypes, mutations were detected outside the VPg, in the ORF...
متن کاملComplete Genome Sequence of a New Strain of Rice yellow mottle virus from Malawi, Characterized by a Recombinant VPg Protein
The complete sequence of the isolate Mw10 of Rice yellow mottle virus was determined. Sequence comparisons revealed 8.4% to 10.7% nucleotide divergence from the published sequences, resulting in the definition of the strain S7. Importantly, a putative recombination event was identified encompassing the viral genome-linked protein involved in host adaptation.
متن کاملMutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown
Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point i...
متن کاملHistorical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus
The rymv1-2 and rymv1-3 alleles of the RYMV1 resistance to Rice yellow mottle virus (RYMV), coded by an eIF(iso)4G1 gene, occur in a few cultivars of the Asiatic (Oryza sativa) and African (O. glaberrima) rice species, respectively. The most salient feature of the resistance breaking (RB) process is the converse genetic barrier to rymv1-2 and rymv1-3 resistance breakdown. This specificity is mo...
متن کاملBarley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants
In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 87 Pt 5 شماره
صفحات -
تاریخ انتشار 2006