In vitro reconstitution of Artemia satellite chromatin.

نویسندگان

  • M C Motta
  • N Landsberger
  • C Merli
  • G Badaracco
چکیده

We report the characterization of an in vitro chromatin assembly system derived from Artemia embryos and its application to the study of AluI-113 satellite DNA organization in nucleosomes. The system efficiently reconstitutes chromatin templates by associating DNA, core histones, and H1. The polynucleosomal complexes show physiological spacing of repeat length 190 +/- 5 base pairs, and the internucleosomal distances are modulated by energy-using activities that contribute to the dynamics of chromatin conformation. The assembly extract was used to reconstitute tandemly repeated AluI-113 sequences. The establishment of preferred histone octamer/satellite DNA interactions was observed. In vitro, AluI-113 elements dictated the same nucleosome translational localizations as found in vivo. Specific rotational constraints seem to be the central structural requirement for nucleosome association. Satellite dinucleosomes showed decreased translational mobility compared with mononucleosomes. This could be the consequence of interactions between rotationally positioned nucleosomes separated by linker DNA of uniform length. AluI-113 DNA led to weak cooperativity of nucleosome association in the proximal flanking regions, which decreased with distance. Moreover, the structural properties of satellite chromatin can spread, thus leading to a specific organization of adjacent nucleosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of the CCAAT-binding trimer NF-Y with nucleosomes.

NF-Y is a sequence-specific evolutionary conserved activator binding to CCAAT boxes with high affinity and specificity. It is a trimer formed by NF-YA and two putative histone-like subunits, NF-YB and NF-YC, showing similarity to histones H2B and H2A, respectively. We investigated the relationships between NF-Y and chromatin using an Artemia franciscana chromatin assembly system with plasmids c...

متن کامل

Topological constraints strongly affect chromatin reconstitution in silico

The fundamental building block of chromatin, and of chromosomes, is the nucleosome, a composite material made up from DNA wrapped around a histone octamer. In this study we provide the first computer simulations of chromatin self-assembly, starting from DNA and histone proteins, and use these to understand the constraints which are imposed by the topology of DNA molecules on the creation of a p...

متن کامل

Acetylation of Chromatin-Associated Histone H3 Lysine 56 Inhibits the Development of Encysted Artemia Embryos

BACKGROUND As a response to harsh environments, the crustacean artemia produces diapause gastrula embryos (cysts), in which cell division and embryonic development are totally arrested. This dormant state can last for very long periods but be terminated by specific environmental stimuli. Thus, artemia is an ideal model organism in which to study cell cycle arrest and embryonic development. PR...

متن کامل

Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays.

The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear memb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 29  شماره 

صفحات  -

تاریخ انتشار 1998