Localization of U-modules. Iii. Tensor Categories Arising from Configuration Spaces
نویسنده
چکیده
In Chapter 1 we associate with every Cartan matrix of finite type and a non-zero complex number ζ an abelian artinian category FS. We call its objects finite factorizable sheaves. They are certain infinite collections of perverse sheaves on configuration spaces, subject to a compatibility (”factorization”) and finiteness conditions. In Chapter 2 the tensor structure on FS is defined using functors of nearby cycles. It makes FS a braided tensor category.
منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملA study on dimensions of modules
In this article we study relations between some algebraic operations such as tensor product and localization from one hand and some well-known dimensions such as uniform dimension, hollow dimension and type dimension from the other hand. Some minor applications to the ring $C(X)$ are observed.
متن کاملA logarithmic generalization of tensor product theory for modules for a vertex operator algebra
We describe a logarithmic tensor product theory for certain module categories for a “conformal vertex algebra.” In this theory, which is a natural, although intricate, generalization of earlier work of Huang and Lepowsky, we do not require the module categories to be semisimple, and we accommodate modules with generalized weight spaces. The corresponding intertwining operators contain logarithm...
متن کاملJet Modules.
In this paper we classify indecomposable modules for the Lie algebra of vector fields on a torus that admit a compatible action of the algebra of functions. An important family of such modules is given by spaces of jets of tensor fields. 0. Introduction. In recent years there was a substantial progress in representation theory of infinitedimensional Lie algebras of rank n > 1, toroidal Lie alge...
متن کاملCartesian Closed Topological Categories and Tensor Products
The projective tensor product in a category of topologicalR-modules (where R is a topological ring) can be defined in Top, the category of topological spaces, by the same universal property used to define the tensor product of R-modules in Set. In this article, we extend this definition to an arbitrary topological category X and study how the cartesian closedness of X is related to the monoidal...
متن کامل