Effect of Pedicle Fill on Axial Pullout Strength in Spinal Fixation After Rod Reduction.
نویسندگان
چکیده
Rod reduction to pedicle screws is used for a variety of spinal fixation procedures; however, it can alter the integrity of the screw-bone interface. The authors investigated the effect of pedicle fill (ratio of pedicle screw diameter to pedicle diameter) on the strength of the screw-bone interface after simulated rod reduction on 17 vertebrae (3 thoracolumbar spine specimens). Pedicle diameter was measured with standard clinical computed tomography scan protocols. The authors determined the minimum pedicle diameter for each level. Polyaxial pedicle screws were surgically placed bilaterally with a freehand technique with standard clinical anatomic landmarks. The pedicle pairs were instrumented with pedicle screws of predetermined diameter, 1 with greater than 80% fill and 1 with less than 80% fill. A simulated reduction maneuver was performed with a 5-mm gap followed by an axial pullout test to assess screw interface strength. Comparison of insertion torque between less than 80% fill and greater than 80% fill did not show significant increases. A significant difference in pullout load (P=.043) occurred with greater than 80% fill (791±637 N) compared with less than 80% fill (636±492 N). No significant difference in stiffness was noted (P=.154) with pedicle fill of greater than 80% (427±134 N/mm) compared with less than 80% (376±178 N/mm). The current findings support the use of greater than 80% pedicle fill for optimal screw anchoring in pedicle screw-based constructs involving rod reduction. Surgeons should consider placing screws that can safely fill vertebral pedicles, especially at the apex of the curve and the proximal and distal levels of constructs, where excessive forces are imparted to the screws. [Orthopedics. 2017; 40(6):e990-e995.].
منابع مشابه
Pullout Strength after Expandable Polymethylmethacrylate Transpedicular Screw Augmentation for Pedicle Screw Loosening
OBJECTIVE Pedicle screw fixation for spine arthrodesis is a useful procedure for the treatment of spinal disorders. However, instrument failure often occurs, and pedicle screw loosening is the initial step of a range of complications. The authors recently used a modified transpedicular polymethylmethacrylate (PMMA) screw augmentation technique to overcome pedicle screw loosening. Here, they rep...
متن کاملPullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical...
متن کاملMultiobjective Optimization Design of Spinal Pedicle Screws Using Neural Networks and Genetic Algorithm: Mathematical Models and Mechanical Validation
Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the pre...
متن کاملDesigns and Techniques That Improve the Pullout Strength of Pedicle Screws in Osteoporotic Vertebrae: Current Status
Osteoporosis is a medical condition affecting men and women of different age groups and populations. The compromised bone quality caused by this disease represents an important challenge when a surgical procedure (e.g., spinal fusion) is needed after failure of conservative treatments. Different pedicle screw designs and instrumentation techniques have been explored to enhance spinal device fix...
متن کاملBiomechanical evaluation of monosegmental pedicle instrumentation in a calf spine model and the role of fractured vertebrae in screw stability
BACKGROUND Monsegmental pedicle instrumentation (MSPI) has been used to treat thoracolumbar fractures. However, there are few reports about the biomechanical characteristics of MSPI compared with traditional short-segment pedicle instrumentation (SSPI) in management of unstable thoracolumbar fractures, and the influence of vertebral fracture on screw stability is still unclear. METHODS This s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Orthopedics
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2017