A modified harmonic block Arnoldi algorithm with adaptive shifts for large interior eigenproblems
نویسنده
چکیده
The harmonic block Arnoldi method can be used to find interior eigenpairs of large matrices. Given a target point or shift to which the needed interior eigenvalues are close, the desired interior eigenpairs are the eigenvalues nearest and the associated eigenvectors. However, it has been shown that the harmonic Ritz vectors may converge erratically and even may fail to do so. To do a better job, a modified harmonic block Arnoldi method is coined that replaces the harmonic Ritz vectors by some modified harmonic Ritz vectors. The relationships between the modified harmonic block Arnoldi method and the original one are analyzed. Moreover, how to adaptively adjust shifts during iterations so as to improve convergence is also discussed. Numerical results on the efficiency of the new algorithm are reported. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems
The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numeri...
متن کاملA Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗
Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...
متن کاملPii: S0168-9274(01)00132-5
The harmonic Arnoldi method can be used to compute some eigenpairs of a large matrix, and it is more suitable for finding interior eigenpairs. However, the harmonic Ritz vectors obtained by the method may converge erratically and may even fail to converge, so that resulting algorithms may not perform well. To improve convergence, a refined harmonic Arnoldi method is proposed that replaces the h...
متن کاملRational Krylov for Large Nonlinear Eigenproblems
Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue algorithm where several shifts (matrix factorizations) are used in one run. It corresponds to multipoint moment matching in model reduction. A variant applicable to nonlinear eigenproblems is described.
متن کاملGeneralized block Lanczos methods for large unsymmetric eigenproblems
Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error...
متن کامل