Analysis of Optimal Bivariate Symmetric Refinable Hermite Interpolants

نویسندگان

  • Bin Han
  • Qun Mo
  • BIN HAN
  • QUN MO
چکیده

Multivariate refinable Hermite interpolants with high smoothness and small support are of interest in CAGD and numerical algorithms. In this article, we are particularly interested in analyzing some univariate and bivariate symmetric refinable Hermite interpolants, which have some desirable properties such as short support, optimal smoothness and spline property. We shall study the projection method for multivariate refinable function vectors and discuss some properties of multivariate spline refinable function vectors. Here a compactly supported multivariate spline function on Rs just means a function of piecewise polynomials supporting on a finite number of polygonal partition subdomains of Rs. We shall discuss spline refinable function vectors by investigating the structure of the eigenvalues and eigenvectors of the transition operator. To illustrate the results in this paper, we shall analyze the optimal smoothness and spline properties of some univariate and bivariate refinable Hermite interpolants. For the regular triangular mesh, we obtain a bivariate C2 symmetric dyadic refinable Hermite interpolant of order 2 whose mask is supported inside [−1, 1]2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate refinable Hermite interpolant

We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easyto-use constructio...

متن کامل

Multivariate Refinable Hermite Interpolants

We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We study also a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use constructi...

متن کامل

Refinable Bivariate Quartic C-splines for Multi-level Data Representation and Surface Display

In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...

متن کامل

Refinable bivariate quartic C2-splines for multi-level data representation and surface display

In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...

متن کامل

Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions

Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007