Efficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings

نویسندگان

  • Benjamin Marie
  • Atsushi Fujita
چکیده

We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from in-domain monolingual corpora.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BilBOWA: Fast Bilingual Distributed Representations without Word Alignments

We introduce BilBOWA (Bilingual Bag-ofWords without Alignments), a simple and computationally-efficient model for learning bilingual distributed representations of words which can scale to large monolingual datasets and does not require word-aligned parallel training data. Instead it trains directly on monolingual data and extracts a bilingual signal from a smaller set of raw-text sentence-alig...

متن کامل

Collocation Extraction Using Monolingual Word Alignment Method

Statistical bilingual word alignment has been well studied in the context of machine translation. This paper adapts the bilingual word alignment algorithm to monolingual scenario to extract collocations from monolingual corpus. The monolingual corpus is first replicated to generate a parallel corpus, where each sentence pair consists of two identical sentences in the same language. Then the mon...

متن کامل

Bilingual Word Embeddings with Bucketed CNN for Parallel Sentence Extraction

We propose a novel model which can be used to align the sentences of two different languages using neural architectures. First, we train our model to get the bilingual word embeddings and then, we create a similarity matrix between the words of the two sentences. Because of different lengths of the sentences involved, we get a matrix of varying dimension. We dynamically pool the similarity matr...

متن کامل

Building a Monolingual Parallel Corpus for Text Simplification Using Sentence Similarity Based on Alignment between Word Embeddings

Methods for text simplification using the framework of statistical machine translation have been extensively studied in recent years. However, building the monolingual parallel corpus necessary for training the model requires costly human annotation. Monolingual parallel corpora for text simplification have therefore been built only for a limited number of languages, such as English and Portugu...

متن کامل

A Distribution-based Model to Learn Bilingual Word Embeddings

We introduce a distribution based model to learn bilingual word embeddings from monolingual data. It is simple, effective and does not require any parallel data or any seed lexicon. We take advantage of the fact that word embeddings are usually in form of dense real-valued lowdimensional vector and therefore the distribution of them can be accurately estimated. A novel cross-lingual learning ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017