Amphetamine withdrawal alters bistable states and cellular coupling in rat prefrontal cortex and nucleus accumbens neurons recorded in vivo.

نویسندگان

  • S P Onn
  • A A Grace
چکیده

Repeated amphetamine administration is known to produce changes in corticoaccumbens function that persist beyond termination of drug administration. We have found previously that long-term alteration in dopamine systems leads to changes in gap junction communication, expressed as dye coupling, between striatal neurons. In this study, the cellular bases of amphetamine-induced changes were examined using in vivo intracellular recordings and dye injection in ventral prefrontal-accumbens system neurons of control and amphetamine-treated rats. Rats that had been withdrawn from repeated amphetamine displayed a significant increase in the incidence of dye coupling in the prefrontal cortex and nucleus accumbens, which persisted for up to 28 d after withdrawal. The increased coupling was limited to projection neurons in both prefrontal cortical and accumbens brain regions, as identified by their axonal trajectory or the absence of interneuron-selective immunocytochemical markers. These changes occurred with no substantial loss of tyrosine hydroxylase-immunoreactive terminals in these cortical and accumbens regions, ruling out dopamine degeneration as a precipitating factor. Previous studies showed that nitric oxide plays a role in the regulation of coupling; however, amphetamine-withdrawn rats had fewer numbers of neurons and processes that stained for nitric oxide synthase immunoreactivity. In amphetamine-treated rats, a higher proportion of cortical cells fired in bursts, and a larger proportion of accumbens and prefrontal cortical neurons exhibited bistable membrane oscillations. By increasing corticoaccumbens transmission, amphetamine withdrawal may lead to neuronal synchronization via gap junctions. Furthermore, this adaptation to amphetamine treatment persists long after the drug is withdrawn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.

The interactions among excitatory inputs arising from the prefrontal cortex, amygdala, and hippocampus, and innervating nucleus accumbens neurons were studied using in vivo intracellular recording techniques. Neurons recorded in the accumbens displayed one of three activity states: (1) silent, (2) spontaneously firing at low, constant rates, or (3) a bistable membrane potential, characterized b...

متن کامل

The Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats

Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...

متن کامل

Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine.

Experience-dependent changes in behavior are thought to involve structural modifications in the nervous system, especially alterations in patterns of synaptic connectivity. Repeated experience with drugs of abuse can result in very long-lasting changes in behavior, including a persistent hypersensitivity (sensitization) to their psychomotor activating and rewarding effects. It was hypothesized,...

متن کامل

Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus acc...

متن کامل

Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex.

We studied the long-term effects of amphetamine self-administration experience (or sucrose reward training) on dendritic morphology (spine density) in nucleus accumbens (Nacc), medial (MPC) and orbital prefrontal cortex (OFC), and hippocampus (CA1 and dentate). Independent groups of rats were trained under a continuous schedule of reinforcement to nose-poke for infusions of amphetamine (0.125 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2000