On-line Ramsey Numbers of Paths and Cycles

نویسندگان

  • Joanna Cyman
  • Tomasz Dzido
  • John Lapinskas
  • Allan Lo
چکیده

Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of G or a blue copy of H for some fixed graphs G and H. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the on-line Ramsey number r̃(G,H). In this paper, we consider the case where G is a path Pk. We prove that r̃(P3, P`+1) = d5`/4e = r̃(P3, C`) for all ` > 5, and determine r̃(P4, P`+1) up to an additive constant for all ` > 3. We also prove some general lower bounds for on-line Ramsey numbers of the form r̃(Pk+1, H).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Multi-Colored Ramsey Numbers of Paths and Even Cycles

In this paper we improve the upper bound on the multi-color Ramsey numbers of paths and even cycles.

متن کامل

On size multipartite Ramsey numbers for stars versus paths and cycles

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...

متن کامل

A note on small on-line Ramsey numbers for paths and their generalization

In this note, we consider the on-line Ramsey numbers R(Pn) for paths and their generalization. The standard on-line Ramsey game is played on an unbounded set of vertices, whereas the new variant of the game we consider is the game where the number of vertices is bounded. Using a computer cluster of 80 processors, we ‘calculated’ some new values for short paths, both for the generalized on-line ...

متن کامل

Improved Upper Bounds for Gallai-Ramsey Numbers of Paths and Cycles

Given a graph G and a positive integer k, define the Gallai-Ramsey number to be the minimum number of vertices n such that any k-edge-coloring of Kn contains either a rainbow (all different colored) triangle or a monochromatic copy of G. In this work, we improve upon known upper bounds on the Gallai-Ramsey numbers for paths and cycles. All these upper bounds now have the best possible order of ...

متن کامل

A Note On Off-Diagonal Small On-Line Ramsey Numbers For Paths

In this note we consider the on-line Ramsey numbers R(Pn, Pm) for paths. Using a high performance computing clusters, we calculated the values for off-diagonal numbers for paths of lengths at most 8. Also, we were able to check thatR(P9, P9) = 17, thus solving the problem raised in [5].

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015