Transgenic zebrafish reveals novel mechanisms of translational control of cyclin B1 mRNA in oocytes.

نویسندگان

  • Kyota Yasuda
  • Tomoya Kotani
  • Ryoma Ota
  • Masakane Yamashita
چکیده

Temporal translation control of localized mRNA is crucial for regulating various cellular and developmental processes. However, little is known about the mechanisms of temporal translation control of localized mRNA due to the limitation in technology. cyclin B1 mRNA at the animal polar cytoplasm of immature zebrafish oocytes is translationally repressed, and its activation is temporally regulated during maturation. Mechanisms of cyclin B1 translation in oocytes were analyzed using transgenic zebrafish in which reporter mRNAs are produced from transgenes introduced into the genome through transcription in the nucleus followed by transport to the cytoplasm, as in endogenous mRNAs. Real-time imaging of the site and timing of translation showed that mRNAs containing the full-length cyclin B1 sequence precisely mimic the localization and translation of endogenous cyclin B1 mRNA. However, mRNAs containing cyclin B1 3' untranslated region but lacking open reading frame (ORF) underwent abnormal localization and precocious translational activation, indicating the significance of the ORF in translational control of cyclin B1 mRNA. Our genetic approach in combination with real-time imaging of the translation site and timing provides a novel insight into the mechanisms of temporal control of translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possible involvement of insulin-like growth factor 2 mRNA-binding protein 3 in zebrafish oocyte maturation as a novel cyclin B1 mRNA-binding protein that represses the translation in immature oocytes.

In immature zebrafish oocytes, dormant cyclin B1 mRNAs localize to the animal polar cytoplasm as aggregates. After hormonal stimulation, cyclin B1 mRNAs are dispersed and translationally activated, which are necessary and sufficient for the induction of zebrafish oocyte maturation. Besides cytoplasmic polyadenylation element-binding protein (CPEB) and cis-acting elements in the 3' untranslated ...

متن کامل

Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules

Temporal control of messenger RNA (mRNA) translation is an important mechanism for regulating cellular, neuronal, and developmental processes. However, mechanisms that coordinate timing of translational activation remain largely unresolved. Full-grown oocytes arrest meiosis at prophase I and deposit dormant mRNAs. Of these, translational control of cyclin B1 mRNA in response to maturation-induc...

متن کامل

A cis-acting element in the coding region of cyclin B1 mRNA couples subcellular localization to translational timing.

Subcellular localization of messenger RNAs (mRNAs) to correct sites and translational activation at appropriate timings are crucial for normal progression of various biological events. However, a molecular link between the spatial regulation and temporal regulation remains unresolved. In immature zebrafish oocytes, translationally repressed cyclin B1 mRNA is localized to the animal polar cytopl...

متن کامل

Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation

Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, ev...

متن کامل

Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus

Cytoplasmic polyadenylation of specific mRNAs is commonly correlated with their translational activation during development. A canonical nuclear polyadenylation element AAUAAA (NPE) and cytoplasmic polyadenylation element(s) (CPE) are necessary and sufficient for polyadenylation during egg maturation. We have characterized cis-acting sequences of Xenopus nuclear lamin B1 mRNA that mediate trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 348 1  شماره 

صفحات  -

تاریخ انتشار 2010