Solving Weighted Voting Game Design Problems Optimally: Representations, Synthesis, and Enumeration
نویسندگان
چکیده
We study the power index voting game design problem for weighted voting games: the problem of finding a weighted voting game in which the power of the players is as close as possible to a certain target distribution. Our goal is to find algorithms that solve this problem exactly. Thereto, we consider various subclasses of simple games, and their associated representation methods. We survey algorithms and impossibility results for the synthesis problem, i.e., converting a representation of a simple game into another representation. We contribute to the synthesis problem by showing that it is impossible to compute in polynomial time the list of ceiling coalitions (also known as shift-maximal losing coalitions) of a game from its list of roof coalitions (also known as shift-minimal winning coalitions), and vice versa. Then, we proceed by studying the problem of enumerating the set of weighted voting games. We present first a naive algorithm for this, running in doubly exponential time. Using our knowledge of the synthesis problem, we then improve on this naive algorithm, and we obtain an enumeration algorithm that runs in quadratic exponential time (that is, O(2 2 · p(n)) for a polynomial p). Moreover, we show that this algorithm runs in output-polynomial time, making it the best possible enumeration algorithm up to a polynomial factor. Finally, we propose an exact anytime algorithm for the power index voting game design problem that runs in exponential time. This algorithm is straightforward and general: it computes the error for each game enumerated, and outputs the game that minimizes this error. By the genericity of our approach, our algorithm can be used to find a weighted voting game that optimizes any exponential time computable function. We implement our algorithm for the case of the normalized Banzhaf in∗Algorithms, Combinatorics and Optimization; Centrum Wiskunde & Informatica; The Netherlands; Email: [email protected]. †Algorithmics; Delft University of Technology; The Netherlands; Email: [email protected]. ‡Department of Econometrics; Erasmus University Rotterdam; The Netherlands; Email:
منابع مشابه
On the Design and Synthesis of Voting Games
In many real-world decision making settings, situations arise in which the parties (or: players) involved must collectively make decisions while not every player is supposed to have an equal amount of influence in the outcome of such a decision. The weighted voting game is a model that is often used to make such decisions. The amount of influence that a player has in a weighted voting game can ...
متن کاملEnumeration and exact design of weighted voting games
In many multiagent settings, situations arise in which agents must collectively make decisions while not every agent is supposed to have an equal amount of influence in the outcome of such a decision. Weighted voting games are often used to deal with these situations. The amount of influence that an agent has in a weighted voting game can be measured by means of various power indices. This pape...
متن کاملBoolean combinations of weighted voting games
Weighted voting games are a natural and practically important class of simple coalitional games, in which each agent is assigned a numeric weight, and a coalition is deemed to be winning if the sum of weights of agents in that coalition meets some stated threshold. We study a natural generalisation of weighted voting games called Boolean Weighted Voting Games (BWVGs). BWVGs are intended to mode...
متن کاملFinding Optimal Solutions for Voting Game Design Problems
In many circumstances where multiple agents need to make a joint decision, voting is used to aggregate the agents’ preferences. Each agent’s vote carries a weight, and if the sum of the weights of the agents in favor of some outcome is larger than or equal to a given quota, then this outcome is decided upon. The distribution of weights leads to a certain distribution of power. Several ‘power in...
متن کاملOn the complexity of problems on simple games
Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes-no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand. Each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1204.5213 شماره
صفحات -
تاریخ انتشار 2012