Diagara: an Incremental Algorithm for Inferring Implicative Rules from Examples
نویسنده
چکیده
An approach is proposed for inferring implicative logical rules from examples. The concept of a good diagnostic test for a given set of positive examples lies in the basis of this approach. The process of inferring good diagnostic tests is considered as a process of inductive common sense reasoning. The incremental approach to learning algorithms is implemented in an algorithm DIAGaRa for inferring implicative rules from examples.
منابع مشابه
Modeling Processes of Inferring Good Maximally Redundant Tests
Good test analysis is considered. Two kinds of classification subtasks are defined: attributive and object ones. Some ideas of modeling and optimization of inferring good maximally redundant tests are formalized. An algorithm of inferring good maximally redundant tests based on the decomposition into attributive subtasks is given, where good maximally redundant tests are regarded as concepts of...
متن کاملAn incremental learning algorithm for constructing Boolean functions from positive and negative examples
This paper introduces an incremental algorithm for learning a Boolean function from examples. The functions are constructed in the disjunctive normal form (DNF) or the conjunctive normal form (CNF) and emphasis is placed in inferring functions with as few clauses as possible. This incremental algorithm can be combined with any existing algorithm that infers a Boolean function from examples. In ...
متن کاملMulti-layer Incremental Induction
This paper describes a multi-layer incremental induction algorithm , MLII, which is linked to an existing nonincremental induction algorithm to learn incrementally from noisy data. MLII makes use of three operations: data partitioning, generalization and reduction. Generalization can either learn a set of rules from a (sub)set of examples, or reene a previous set of rules. The latter is achieve...
متن کاملIncremental learning based on non-incremental in- duction algorithm
The machine learning algorithms can be divided into two general types: non-incremental that processes all training examples at once and incremental that handles examples one by one. This paper describes the multi-layer incremental inference algorithm (MLII) [1] based on the non-incremental inductive inference algorithm CN2 [2]. In original, the MLII algorithm used linked with the non-incrementa...
متن کاملDiscovering R-rules with a directed hierarchy
In this paper, we extend the classical notion of quasi-implication (“when ai is present then usually aj is also present”) to R-rules (rules of rules), the premisses and the conclusions of which can be rules themselves. A new statistical measure, based on the implicative intensity defined by Gras for quasi-implications, is defined to assess the significance of R-rules on a data set. We show how ...
متن کامل