Biofilms’ Role in Planktonic Cell Proliferation
نویسندگان
چکیده
The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation.
منابع مشابه
Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii
Objectives:Biofilms are communities of bacteria attached to surfaces through an external polymeric substances matrix. In the meantime, Acinetobacterbaumannii is the predominant species related to nosocomial infections. In the present study, the effect of silver nanoparticles alone and in combination with biocides and imipenem against planktonic and biofilms of A. baumannii was assessed. Materi...
متن کاملInvestigations of Antimicrobial Activity of Eucalyptus Camaldulensis Extracts against Six Pathogenic Bacteria in Planktonic Form and Biofilm
Background & Aims: Microorganisms are protected from antimicrobial agents when placed in biofilm structure. Biofilm-producing microorganisms are responsible for many problems in industry and medicine; therefore, it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Eucalyptus camaldulensis alcoholic extracts against ...
متن کاملLiving together in biofilms: the microbial cell factory and its biotechnological implications
In nature, bacteria alternate between two modes of growth: a unicellular life phase, in which the cells are free-swimming (planktonic), and a multicellular life phase, in which the cells are sessile and live in a biofilm, that can be defined as surface-associated microbial heterogeneous structures comprising different populations of microorganisms surrounded by a self-produced matrix that allow...
متن کاملRole for cell density in antifungal drug resistance in Candida albicans biofilms.
Biofilms of Candida albicans are less susceptible to many antifungal drugs than are planktonic yeast cells. We investigated the contribution of cell density to biofilm phenotypic resistance. Planktonic yeast cells in RPMI 1640 were susceptible to azole-class drugs, amphotericin B, and caspofungin at 1 x 10(3) cells/ml (standard conditions) using the XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)...
متن کاملAntimicrobial Effect of Combined Extract of Three Plants Camellia Sinensis, Teucrium Polium and Piper Nigrum on Antibiotic Resistant Pathogenic Bacteria
Background and Aims: Microbial biofilms are responsible for 65% of human infections and antibiotic resistance. Therefore, finding appropriate ways to prevent infection and biofilm formation is essential. Medicinal plants are one of the suitable candidates to inhibit the antibiotics resistance particularly in biofilm forms. In this study, antimicrobial effects of T.C.P combined extracts (methano...
متن کامل