Phospholipid metabolite 1-palmitoyl-lysophosphatidylcholine enhances human ether-a-go-go-related gene (HERG) K(+) channel function.
نویسندگان
چکیده
BACKGROUND Lysophosphatidylcholine (LPC), a naturally occurring phospholipid metabolite, accumulates in the ischemic heart and causes extracellular K(+) accumulation and action potential shortening. LPC has been incriminated as a biochemical trigger of lethal cardiac arrhythmias, but the underlying mechanisms remain poorly understood. METHODS AND RESULTS We studied the effect of 1-palmitoyl-LPC (Pal-LPC) on currents resulting from human ether-a-go-go-related gene (HERG) expression in human embryonic kidney (HEK) cells using whole-cell patch-clamp techniques. Bath application of Pal-LPC consistently and reversibly increased HERG current (I(HERG)). The effects of Pal-LPC were apparent as early as 3 minutes after application of the drug, reached maximum within 10 minutes, and were reversible on washout. Pal-LPC increased I(HERG) at voltages between -20 and +30 mV, with greater effects at stronger depolarization. However, Pal-LPC did not affect the voltage-dependence of I(HERG) activation. In contrast, Pal-LPC significantly shifted the inactivation curve toward more positive potentials, causing a mean 20.0+/-2.2 mV shift in half-inactivation voltage relative to control. CONCLUSIONS Our results indicate that apart from being a well-recognized target for drug inhibition, I(HERG) can also be enhanced by natural substances. An increase in I(HERG) by Pal-LPC may contribute to K(+) loss, abnormal electrophysiology, and arrhythmia occurrence in the ischemic heart.
منابع مشابه
Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block.
BACKGROUND Defective protein trafficking is a consequence of gene mutations. Human long-QT (LQT) syndrome results from mutations in several genes, including the human ether-a-go-go-related gene (HERG), which encodes a delayed rectifier K(+) current. Trafficking-defective mutant HERG protein is a mechanism for reduced delayed rectifier K(+) current in LQT2, and high-affinity HERG channel-blockin...
متن کاملGasping for answers. Focus on "Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia".
Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on S...
متن کاملAPETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels.
A new peptide, APETx1, which specifically inhibits human ether-a-go-go-related gene (HERG) channels, was purified from venom of the sea anemone Anthopleura elegantissima. APETx1 is a 42-amino acid peptide cross-linked by three disulfide bridges and shares 54% homology with BDS-I, another sea anemone K+ channel inhibitor. Although they differ in their specific targets, circular dichroism spectra...
متن کاملThe S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.
A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the...
متن کاملMolecular determinants of inactivation and dofetilide block in ether a-go-go (EAG) channels and EAG-related K(+) channels.
The major subunit of the cardiac delayed rectifier current I(Kr) is encoded by the human ether a-go-go related gene (HERG). HERG/I(Kr) channels are blocked selectively by class III antiarrhythmic methanesulfonanilide drugs such as dofetilide. The binding site for methanesulfonanilides is believed to be similar for nonantiarrhythmic drugs such as antihistamines, antibiotics, and antipsychotics. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 22 شماره
صفحات -
تاریخ انتشار 2001