Estimation of Synteny Conservation and Genome Compaction Between Pufferfish (Fugu) and Human
نویسندگان
چکیده
BACKGROUND Knowledge of the amount of gene order and synteny conservation between two species gives insights to the extent and mechanisms of divergence. The vertebrate Fugu rubripes (pufferfish) has a small genome with little repetitive sequence which makes it attractive as a model genome. Genome compaction and synteny conservation between human and Fugu were studied using data from public databases. METHODS Intron length and map positions of human and Fugu orthologues were compared to analyse relative genome compaction and synteny conservation respectively. The divergence of these two genomes by genome rearrangement was simulated and the results were compared to the real data. RESULTS Analysis of 199 introns in 22 orthologous genes showed an eight-fold average size reduction in Fugu, consistent with the ratio of total genome sizes. There was no consistent pattern relating the size reduction in individual introns or genes to gene base composition in either species. For genes that are neighbours in Fugu (genes from the same cosmid or GenBank entry), 40-50% have conserved synteny with a human chromosome. This figure may be underestimated by as much as two-fold, due to problems caused by incomplete human genome sequence data and the existence of dispersed gene families. Some genes that are neighbours in Fugu have human orthologues that are several megabases and tens of genes apart. This is probably caused by small inversions or other intrachromosomal rearrangements. CONCLUSIONS Comparison of observed data to computer simulations suggests that 4000-16 000 chromosomal rearrangements have occurred since Fugu and human shared a common ancestor, implying a faster rate of rearrangement than seen in human/mouse comparisons.
منابع مشابه
Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13.
The pufferfish Fugu rubripes has a genome approximately 7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (L...
متن کاملLess is more: compact genomes pay dividends.
In 1993, Sydney Brenner, like many others, recognized that vertebrates are distinct in their morphology and development and that access to the complete sequence of a vertebrate genome would yield valuable insights into the biology of higher species not obtainable from genome studies of yeast, fly, or even the nematode. Moreover, at that time it was not possible, through sequencing technology, t...
متن کاملIdentification of Cis-regulatory elements in the mouse Pax9/Nkx2-9 genomic region: implication for evolutionary conserved synteny.
We previously reported close physical linkage between Pax9 and Nkx2-9 in the human, mouse, and pufferfish (Fugu rubripes) genomes. In this study, we analyzed cis-regulatory elements of the two genes by comparative sequencing in the three species and by transgenesis in the mouse. We identified two regions including conserved noncoding sequences that possessed specific enhancer activities for exp...
متن کاملGenomic sequence analysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7.
To define control elements that regulate tissue-specific expression of the cystic fibrosis transmembrane regulator (CFTR), we have sequenced 60 kb of genomic DNA from the puffer fish Fugu rubripes (Fugu) that includes the CFTR gene. This region of the Fugu genome shows conservation of synteny with 800-kb sequence of the human genome encompassing the WNT2, CFTR, Z43555, and CBP90 genes. Addition...
متن کاملQuality not quantity: the pufferfish genome.
The genome of the pufferfish, Fugu rubripes (Fugu) is compact. With a similar gene complement to mammals and a genome size of just 400 Mb, gene density is high averaging one every 6-7 kb. Initial characterization of this genome has shown that although genes are much smaller and more densely spaced, their intron/exon structure is conserved with the resulting introns being small. There is little ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yeast (Chichester, England)
دوره 17 شماره
صفحات -
تاریخ انتشار 2000