Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation.
نویسندگان
چکیده
Various band structure engineering methods have been studied to improve the performance of graphitic transparent conductors; however, none has demonstrated an increase of optical transmittance in the visible range. Here we measure in situ optical transmittance spectra and electrical transport properties of ultrathin graphite (3-60 graphene layers) simultaneously during electrochemical lithiation/delithiation. On intercalation, we observe an increase of both optical transmittance (up to twofold) and electrical conductivity (up to two orders of magnitude), strikingly different from other materials. Transmission as high as 91.7% with a sheet resistance of 3.0 Ω per square is achieved for 19-layer LiC6, which corresponds to a figure of merit σ(dc)/σ(opt) = 1,400, significantly higher than any other continuous transparent electrodes. The unconventional modification of ultrathin graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. Our techniques enable investigation of other aspects of intercalation in nanostructures.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملNanoporous Ag-CNTs foamed electrode for lithium intercalation
Intercalation of lithium into Ag-CNTs sample is reported here. We have used a nano-porous silver foam as a frame for deposition of the CNTs inside the pores by electrophoresis deposition (EPD) technique. By using chronopotentiometry method, we have noticed that the Li storage capacity of the prepared Ag-CNTs electrode was improved noticeably in comparison with literature. ...
متن کاملIn situ Raman study of lithium-ion intercalation into microcrystalline graphite.
The first and second order Raman spectra of graphite during the first lithiation and delithiation have been investigated in a typical lithium-ion battery electrolyte. In situ, real-time Raman measurements under potential control enable the probing of the graphitic negative electrode surface region during ion insertion and extraction. The experimental results reveal the staging formation of a si...
متن کاملUnderstanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics
A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view ...
متن کاملEffect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium.
The intercalation of lithium into graphite was discovered in the 1950's.' After that, many studies focused on the staged phases ' that are formed during lithium intercalation in graphite and in graphitic carbon types. Safran concluded that the staging phenomenon is the result of the competition between interlayer repulsive and in-plane attractive interactions between the intercalated lithium. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014