Green Synthesis of Silver Nanoparticles Stabilized with Mussel-Inspired Protein and Colorimetric Sensing of Lead(II) and Copper(II) Ions

نویسندگان

  • Ja Young Cheon
  • Won Ho Park
چکیده

This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Raman spectrophotometry, and X-ray diffraction (XRD) techniques. The results revealed that the polyDOPA-AgNPs with diameters of 25 nm were well dispersed due to the polyDOPA. It was noted that the polyDOPA-AgNPs showed selectivity for Pb2+ and Cu2+ detection with the detection limits for the two ions as low as 9.4 × 10-5 and 8.1 × 10-5 μM, respectively. Therefore, the polyDOPA-AgNPs can be applied to both Pb2+ and Cu2+ detection in real water samples. The proposed method will be useful for colorimetric detection of heavy metal ions in aqueous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...

متن کامل

Elimination of Copper (II) Ions from Aqueous Solution by the using of gamma alumina nanoparticles

heavy metals, as gamma alumina nanoparticles pollutants, in water resources. Therefore, the purpose of this paper was to evaluate the removal of copper (II) ions from aqueous solutions using gamma alumina nanoparticles as a adsorbent. Batch adsorption studies carried out to study various parameters included contact time, initial concentration of copper (II) ions, pH, and gamma alumina nanoparti...

متن کامل

Extraction and Determination of Heavy Metals Using Silver Coated Magnetic Nanoparticles and Flame Atomic Absorption Spectrometry

A rapid, simple and sensitive magnetic solid phase extraction (MSPE) method was developed for the pre-concentration and determination of copper and cadmium ions. In this study, modified Fe3O4@Ag nanoparticles were synthesized and then ligand 2-isonicotinoyl hydrazine carbodithiolate (ITHCDT) was bonded to silver due to the formation of covalent bond of S-Ag. In this method, copper and cadmium i...

متن کامل

An Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions

In this study, the novel surface ion-imprinted polymer (IIP) particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II) ion. A carbon paste electrode (CPE) modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs) was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon...

متن کامل

Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications.

We report a facile green approach to the synthesis of silver nanoparticles (Ag NPs) on the surface of graphene oxide nanosheets functionalized with mussel-inspired dopamine (GO-Dopa) without additional reductants or stabilizers at room temperature. The resulting hybrid Ag/GO-Dopa exhibits good dispersity and excellent catalytic activity in the reduction of nitroarenes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016