Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through β-TrCP-mediated proteasome degradation

نویسندگان

  • Rui Zhang
  • Sherri Y. Huang
  • Kay Ka-Wai Li
  • Yen-Hsing Li
  • Wei-Hsuan Hsu
  • Guang Jun Zhang
  • Chun-Ju Chang
  • Jer-Yen Yang
چکیده

Overexpression of the GLI1 gene has frequently been found in various cancer types, particularly in brain tumors, in which aberrant GLI1 induction promotes cancer cell growth. Therefore, identifying the molecular players controlling GLI1 expression is of clinical importance. Previously, we reported that AMPK directly phosphorylated and destabilized GLI1, resulting in the suppression of the Hedgehog signaling pathway. The current study not only demonstrates that AMPK inhibits GLI1 nuclear localization, but further reveals that β-TrCP plays an essential role in AMPK-induced GLI1 degradation. We found that activation of AMPK promotes the interaction between β-TrCP and GLI1, and induces β-TrCP-mediated GLI1-ubiquitination and degradation. Inhibiting AMPK activity results in the dissociation of the β-TrCP and GLI1 interaction, and diminishes β-TrCP-mediated-GLI1 ubiquitination and degradation. On GLI1, substitution of AMPK phosphorylation sites to aspartic acid (GLI13E) results in stronger binding affinity of GLI1 with β-TrCP, accompanied by enhanced GLI1 ubiquitination and later degradation. In contrast, the GLI1 alanine mutant (GLI13A) shows weaker binding with β-TrCP, which is accompanied by reduced β-TrCP-mediated ubiquitination and degradation. Together, these results demonstrate that AMPK regulates GLI1 interaction with β-TrCP by phosphorylating GLI1 and thus both post-translational modifications by AMPK and β-TrCP ultimately impact GLI1 degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOX9 inhibits β-TrCP-mediated protein degradation to promote nuclear GLI1 expression and cancer stem cell properties.

The high mobility group box protein SOX9 and the GLI1 transcription factor play protumorigenic roles in pancreatic ductal adenocarcinoma (PDA). In Kras transgenic mice, each of these factors are crucial for the development of PDA precursor lesions. SOX9 transcription is directly regulated by GLI1, but how SOX9 functions downstream of GLI1 is unclear. We observed positive feedback, such that SOX...

متن کامل

The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint

Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs) and its aberrant activation is a leading cause of Medulloblastoma, the most frequent pediatric brain tumor. We show here that the energy sensor AMPK inhibits Hh signaling by phosphorylating a single residue of human Gli1 that is not conserved in other species. Studies with selective agonists and genetic delet...

متن کامل

Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1–SUFU Interaction in PDA Cells

Dysregulation of Hedgehog (Hh) signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA). Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our d...

متن کامل

Lithium Inhibits Tumorigenic Potential of PDA Cells through Targeting Hedgehog-GLI Signaling Pathway

Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA) and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β) that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downst...

متن کامل

Rotavirus NSP1 Inhibits NFκB Activation by Inducing Proteasome-Dependent Degradation of β-TrCP: A Novel Mechanism of IFN Antagonism

Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017