Connected corticospinal sites show enhanced tuning similarity at the onset of voluntary action.

نویسندگان

  • Yuval Yanai
  • Nofya Adamit
  • Ran Harel
  • Zvi Israel
  • Yifat Prut
چکیده

Corticospinal (CS) pathways provide the structural foundation for executing voluntary movements. Although the anatomy of these pathways is well explored, little is known about spinal decoding of parametric information transmitted via this route during voluntary movements. We addressed this question by simultaneously recording cortical and spinal activity in primates performing an isometric wrist task with multiple targets while measuring CS interactions. Single-pulse cortical stimulation effectively produced a short-latency (presumably monosynaptic) spinal response and thus revealed functionally connected CS sites. Spinal and cortical neurons recorded from connected CS sites showed alignment of directional-torque tuning that peaked at torque onset, consistent with the enhanced cortical drive active during this period. This increased tuning similarity was accompanied by an increased trial-to-trial covariability of firing. Whereas functional CS interactions were dynamic, the efficacy of cortical stimulation was unaffected by the motor state. These results suggest that around the onset of motor action there is a period of facilitated information transfer during which cortical command has greater efficacy in recruiting spinal neurons with matching tuning properties. Dynamic alignment of response properties may form the basis for a spinal readout mechanism of descending motor commands in which directional-torque is a parameter that is preserved across interacting CS sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticospinal Facilitation of Erector Spinae and Rectus Abdominis Muscles During Graded Voluntary Contractions is Task Speci.c: A Pilot Study on Healthy Individuals

Introduction: In this study we compared transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) in a postural (bilateral low back extension: BLBE) and a respiratory (forced expiration during breath holding: FEBH) task.Methods: Using TMS of the left motor cortex, simultaneous patterns of corticospinal facilitation of the contralateral erector spinae (ES) and rectus abdomi...

متن کامل

Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission

The corticospinal tract is an important target for motor recovery after spinal cord injury (SCI) in animals and humans. Voluntary motor output depends on the efficacy of synapses between corticospinal axons and spinal motoneurons, which can be modulated by the precise timing of neuronal spikes. Using noninvasive techniques, we developed tailored protocols for precise timing of the arrival of de...

متن کامل

Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids

In this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at PCC, current harmonics compensation scenario is selected in order to avoid excessive injection of...

متن کامل

Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction Running Head: Motor cortex contributions to rhythmic arm movement

Humans perform rhythmic, locomotor movements with the arms and legs every day. Studies using reflexes to probe the functional role of the CNS suggest that spinal circuits are an important part of the neural control system for rhythmic arm cycling and walking. Here, by studying motor evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and H-reflex...

متن کامل

Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.

After fatigue, motor evoked potentials (MEP) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials elicited by stimulation of the corticospinal tract are depressed. These reductions in corticomotor excitability and corticospinal transmission are accompanied by voluntary activation failure, but this may not reflect a causal relationship. Our purpose was to determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 45  شماره 

صفحات  -

تاریخ انتشار 2007