A Unified View of Causal and Non-causal Feature Selection

نویسندگان

  • Kui Yu
  • Lin Liu
  • Jiuyong Li
چکیده

In this paper, we unify causal and non-causal feature selection methods based on the Bayesian network framework. We first show that the objectives of causal and non-causal feature selection methods are equal and are to find the Markov blanket of a class attribute, the theoretically optimal feature set for classification. We demonstrate that causal and non-causal feature selection take different assumptions of dependency among features to find Markov blanket, and their algorithms are shown different level of approximation for finding Markov blanket. In this framework, we are able to analyze the sample and error bounds of casual and non-causal methods. We conducted extensive experiments to show the correctness of our theoretical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive causal analysis of occupational accidents’ severity in the chemical industries; A field study based on feature selection and multiple linear regression techniques

Introduction: The causal analysis of occupational accidents’ severity in the chemical industries may improve safety design programs in these industries. This comprehensive study was implemented to analyze the factors affecting occupational accidents’ severity in the chemical industries. Methods and Materials: An analytical study was conducted in 22 chemical industries during 2016-2017. The stu...

متن کامل

Causal & Non-Causal Feature Selection for Ridge Regression

In this paper we investigate the use of causal and non-causal feature selection methods for linear classifiers in situations where the causal relationships between the input and response variables may differ between the training and operational data. The causal feature selection methods investigated include inference of the Markov Blanket and inference of direct causes and of direct effects. Th...

متن کامل

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation

We present an algorithmic framework for learning local causal structure around target variables of interest in the form of direct causes/effects and Markov blankets applicable to very large data sets with relatively small samples. The selected feature sets can be used for causal discovery and classification. The framework (Generalized Local Learning, or GLL) can be instantiated in numerous ways...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Causal feature selection

This report reviews techniques for learning causal relationships from data, in application to the problem of feature selection. Most feature selection methods do not attempt to uncover causal relationships between feature and target and focus instead on making best predictions. We examine situations in which the knowledge of causal relationships benefits feature selection. Such benefits may inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05844  شماره 

صفحات  -

تاریخ انتشار 2018