Novelty detection in a Kohonen-like network with a long-term depression learning rule

نویسندگان

  • Dionyssios Theofilou
  • Volker Steuber
  • Erik De Schutter
چکیده

In the cerebellar cortex, long-term depression (LTD) of synapses between parallel &bers (PF) and Purkinje neurons can spread to neighboring ones, independently of their activation by PF input. This spread of non-speci&c LTD around the activated synapses resembles how units are a3ected in the neighborhood of the winner in a Kohonen Network (KN). However in a classic KN the weight vectors become more similar to the input vector with learning, while in the LTD case they should become more dissimilar. We devised a new LTD-KN where units, opposite to the classic KN, decrease their response (LTD-like) when a pattern is learned and we show that this LTD-KN functions as a novelty detector. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

UNSPECIFIED An Unsupervised, Dual-Network Connectionist Model of Rule Emergence in Category Learning

We develop an unsupervised “dual-network” connectionist model of category learning in which rules gradually emerge from a standard Kohonen network. The architecture is based on the interaction of a statistical-learning (Kohonen) network and a competitive-learning rule network. The rules that emerge in the rule network are weightings of individual features according to their importance for categ...

متن کامل

Homosynaptic long-term depression in hippocampus and mescsrtex

Computational models of self-organizing neural networks and associative memory depend on hebbian synaptic plasticity, a local learning rule for increasing synaptic strengths based on coincident electrical activity in presynaptic and postsynaptic neurons. Some forms of long-term potentiation (L TP) studied in the hippocampus and neocortex are hebbian. Learning rules in network models also incorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 52-54  شماره 

صفحات  -

تاریخ انتشار 2003