Trapping DNA–protein binding reactions with neutral osmolytes for the analysis by gel mobility shift and self-cleavage assays
نویسندگان
چکیده
We take advantage of our previous observation that neutral osmolytes can strongly slow down the rate of DNA-protein complex dissociation to develop a method that uses osmotic stress to 'freeze' mixtures of DNA-protein complexes and prevent further reaction enabling analysis of the products. We apply this approach to the gel mobility shift assay and use it to modify a self-cleavage assay that uses the nuclease activity of the restriction endonucleases to measure sensitively their specific binding to DNA. At sufficiently high concentrations of neutral osmolytes the cleavage reaction can be triggered at only those DNA fragments with initially bound enzyme. The self-cleavage assay allows measurement of binding equilibrium and kinetics directly in solution avoiding the intrinsic problems of gel mobility shift and filter binding assays while providing the same sensitivity level. Here we compare the self-cleavage and gel mobility shift assays applied to the DNA binding of EcoRI and BamHI restriction endonucleases. Initial results indicate that BamHI dissociation from its specific DNA sequence is strongly linked to water activity with the half-life time of the specific complex increasing approximately 20-fold from 0 to 1 osmolal betaine.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملSynthesis, Characterization, DNA Binding and Nuclease Activity of Cobalt(II) Complexes of Isonicotinoyl Hydrazones
Cobalt(II) complexes of isonicotinoyl hydrazones of two series of ligands have been synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic moment, mass, IR, UV spectral data. Electrochemical behavior of ligands and complexes has been investigated by using cyclic voltammetry. Cyclic voltammetric studies reveal that the oxidation/reduct...
متن کاملBinding of the C-terminal domain of the alpha subunit of RNA polymerase to the phage mu middle promoter.
The C-terminal domain of the alpha subunit (alpha CTD) of Escherichia coli RNA polymerase is often involved in transcriptional regulation. The alpha CTD typically stimulates transcription via interactions with promoter UP element DNA and transcriptional activators. DNase I footprinting and gel mobility shift assays were used to look for potential interaction of the alpha CTD with the phage Mu m...
متن کاملResolution by diagonal gel mobility shift assays of multisubunit complexes binding to a functionally important element of the rat growth hormone gene promoter.
DNase I footprinting identifies a tissue-general factor, GHF3, binding to the rat growth hormone promoter between nucleotides -239 and -219. Mutation of the GHF3-binding site reduces promoter activity to 30% of that of the wild-type promoter after transfection into GC cells. Southwestern blotting and protein/DNA cross-linking experiments demonstrate that the GHF3-binding factor migrates as a 43...
متن کاملInteractions between integrase and excisionase in the phage lambda excisive nucleoprotein complex.
Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal alpha-helix of Xis is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005