Approximation of solution operators of elliptic partial differential equations by ℋ- and ℋ2-matrices
نویسنده
چکیده
We investigate the problem of computing the inverses of stiffness matrices resulting from the finite element discretization of elliptic partial differential equations. Since the solution operators are non-local, the inverse matrices will in general be dense, therefore they cannot be represented by standard techniques. In this paper, we prove that these matrices can be approximated by Hand H2-matrices. The key results are existence proofs for local lowrank approximations of the solution operator and its discrete counterpart, which give rise to error estimates for Hand H2-matrix approximations of the entire matrices.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملH2-matrices — Multilevel methods for the approximation of integral operators
Multigrid methods are typically used to solve partial differential equations, i.e., they approximate the inverse of the corresponding partial differential operators. At least for elliptic PDEs, this inverse can be expressed in the form of an integral operator by Green's theorem. This implies that multigrid methods approximate certain integral operators , so it is straightforward to look for var...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 115 شماره
صفحات -
تاریخ انتشار 2010