Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis.

نویسندگان

  • Helge Uhrigshardt
  • Anamika Singh
  • Gennadiy Kovtunovych
  • Manik Ghosh
  • Tracey A Rouault
چکیده

The importance of mitochondrial iron-sulfur cluster (ISC) biogenesis for human health has been well established, but the roles of some components of this critical pathway still remain uncharacterized in mammals. Among them is human heat shock cognate protein 20 (hHSC20), the putative human homolog of the specialized DnaJ type co-chaperones, which are crucial for bacterial and fungal ISC assembly. Here, we show that the human HSC20 protein can complement for its counterpart in yeast, Jac1p, and interacts with its proposed human partners, hISCU and hHSPA9. hHSC20 is expressed in various human tissues and localizes mainly to the mitochondria in HeLa cells. However, small amounts were also detected extra-mitochondrially. RNA interference-mediated depletion of hHSC20 specifically reduced the activities of both mitochondrial and cytosolic ISC-containing enzymes. The recovery of inactivated ISC enzymes was markedly delayed after an oxidative insult of hHSC20-deficient cells. Conversely, overexpression of hHSC20 substantially protected cells from oxidative insults. These results imply that hHSC20 is an integral component of the human ISC biosynthetic machinery that is particularly important in the assembly of ISCs under conditions of oxidative stress. A cysteine-rich N-terminal domain, which clearly distinguishes hHSC20 from the specialized DnaJ type III proteins of fungi and most bacteria, was found to be important for the integrity and function of the human co-chaperone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HSC20 interacts with frataxin and is involved in iron-sulfur cluster biogenesis and iron homeostasis.

Friedreich's ataxia is a neurodegenerative disorder caused by mutations in the frataxin gene that produces a predominantly mitochondrial protein whose primary function appears to be mitochondrial iron-sulfur cluster (ISC) biosynthesis. Previously we demonstrated that frataxin interacts with multiple components of the mammalian ISC assembly machinery. Here we demonstrate that frataxin interacts ...

متن کامل

Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli.

The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron-sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene produ...

متن کامل

The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system.

Hsc66, a stress-70 protein, and Hsc20, a J-type accessory protein, comprise a newly described Hsp70-type chaperone system in addition to DnaK-DnaJ-GrpE in Escherichia coli. Because endogenous substrates for the Hsc66-Hsc20 system have not yet been identified, we investigated chaperone-like activities of Hsc66 and Hsc20 by their ability to suppress aggregation of denatured model substrate protei...

متن کامل

Dual Localized AtHscB Involved in Iron Sulfur Protein Biogenesis in Arabidopsis

BACKGROUND Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chape...

متن کامل

Human Iron−Sulfur Cluster Assembly, Cellular Iron Homeostasis, and Disease†

Iron-sulfur (Fe-S) proteins contain prosthetic groups consisting of two or more iron atoms bridged by sulfur ligands, which facilitate multiple functions, including redox activity, enzymatic function, and maintenance of structural integrity. More than 20 proteins are involved in the biosynthesis of iron-sulfur clusters in eukaryotes. Defective Fe-S cluster synthesis not only affects activities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 19  شماره 

صفحات  -

تاریخ انتشار 2010