Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies.

نویسندگان

  • Karen Stephens
  • Molly Weaver
  • Kathleen A Leppig
  • Kyoko Maruyama
  • Peter D Emanuel
  • Michelle M Le Beau
  • Kevin M Shannon
چکیده

To identify the mechanism of loss of heterozygosity (LOH) and potential modifier gene(s), we investigated the molecular basis of somatic NF1 inactivation in myeloid malignancies from 10 children with neurofibromatosis type 1. Loci across a minimal 50-Mb region of primarily the long arm of chromosome 17 showed LOH in 8 cases, whereas a less than 9-Mb region of loci flanking NF1 had LOH in the remaining 2 cases. Two complementary techniques, quantitative polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), were used to determine whether the copy number at loci that showed LOH was 1 or 2 (ie, deleted or isodisomic). The 2 cases with LOH limited to less than 9 Mb were intrachromosomal deletions. Among the 8 leukemias with 50-Mb LOH segments, 4 had partial uniparental isodisomy and 4 had interstitial uniparental isodisomy. These isodisomic cases showed clustering of the centromeric and telomeric LOH breakpoints. This suggests that the cases with interstitial uniparental isodisomy arose in a leukemia-initiating cell by double-homologous recombination events at intervals of preferred mitotic recombination. Homozygous inactivation of NF1 favored outgrowth of the leukemia-initiating cell. Our studies demonstrate that LOH analyses of loci distributed along the chromosomal length along with copy-number analysis can reveal novel mechanisms of LOH that may potentially identify regions harboring "cryptic" tumor suppressor or modifier genes whose inactivation contributes to tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1.

Children with neurofibromatosis type 1 (NF-1), being constitutionally deficient for one allele of the NF1 gene, are at greatly increased risk of juvenile myelomonocytic leukemia (JMML). NF1 is a negative regulator of RAS pathway activity, which has a central role in JMML. To further clarify the role of biallelic NF1 gene inactivation in the pathogenesis of JMML, we investigated the somatic NF1 ...

متن کامل

The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations.

Myelodysplastic syndromes and acute myeloid leukemia with an isodicentric X chromosome [idic(X)(q13)] occur in elderly women and frequently display ringed sideroblasts. Because of the rarity of idic(X)(q13), little is known about its formation, whether a fusion gene is generated, and patterns of additional aberrations. We here present an SNP array study of 14 idic(X)-positive myeloid malignanci...

متن کامل

An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism.

OBJECTIVE Congenital hyperinsulinism (CHI) may be due to diffuse or focal pancreatic disease. The diffuse form is associated with an increase in the size of beta-cell nuclei throughout the whole of the pancreas and most commonly results from recessive ATP-sensitive K(+) channel (K(ATP) channel) mutations. Focal lesions are the consequence of somatic uniparental disomy for a paternally inherited...

متن کامل

Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting ...

متن کامل

Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice.

Hyperactive RAS signaling is caused by mutations in RAS genes or a deficiency of the neurofibromatosis gene (NF1) and is common in myeloid malignancies. In mice, expression of oncogenic K-RAS or inactivation of Nf1 in hematopoietic cells results in myeloproliferative disorders (MPDs) that do not progress to acute myeloid leukemia (AML). Because NF1 is a RAS-GTPase-activating protein it has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 108 5  شماره 

صفحات  -

تاریخ انتشار 2006