Apolipoprotein-E controls adenosine triphosphate-binding cassette transporters ABCB1 and ABCC1 on cerebral microvessels after methamphetamine intoxication.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Methamphetamine is a powerful addictive, which has been associated with ischemic stroke and brain hemorrhage in humans. Whether and how methamphetamine influences the expression of tight junctions and adenosine triphosphate-binding cassette transporters, which have previously been shown to be regulated by apolipoprotein-E (ApoE) under conditions of brain ischemia, was unknown. METHODS C57BL/6J mice received intraperitoneal injections of methamphetamine (3 times 4 mg/kg separated by 3 hours) either alone or in combination with the ApoE receptor-2 inhibitor receptor-associated protein (40 μg/kg) or the inducible nitric oxide synthase inhibitor 1400W (5 mg/kg). Animals were euthanized 3 or 24 hours after methamphetamine exposure. Tissue responses were evaluated with Western blots, immunoprecipitation, and immunohistochemistry using total brain and cerebral microvessel extracts. RESULTS Methamphetamine induced a transient activation of stress kinases c-Jun N-terminal kinase 1/2 and p38 in the brain parenchyma and increased intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression on cerebral microvessels without inducing loss of tight junction proteins and without inducing IgG extravasation. Methamphetamine transiently increased the expression of the luminal adenosine triphosphate-binding cassette transporter ABCB1 on cerebral microvessels and reduced the expression of the abluminal transporter ABCC1. Elevated expression of ApoE was noted in the brain parenchyma by methamphetamine, activating ApoE receptor-2 on brain capillaries, deactivating c-Jun N-terminal kinase 1/2 and c-Jun, and regulating ABCB1 and ABCC1 expression. Indeed, ApoE receptor-2 and inducible nitric oxide synthase inhibition prevented the ABCB1 and ABCC1 expression changes. CONCLUSIONS Acute exposure to methamphetamine at doses comparable to those consumed in drug addiction does not induce tight junction breakdown but differentially regulates adenosine triphosphate-binding cassette transporters through the ApoE/ApoE receptor-2/c-Jun N-terminal kinase 1/2 pathway.
منابع مشابه
The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects elderly persons, evolving with age to reach severe cognitive impairment. Amyloid deposits and neurofibrillary tangles constitute the main pathological hallmarks of AD. Amyloid deposits are initiated by the excessive production and accumulation of beta-amyloid (Aβ) peptides in the brain. The dysfunction of the Neur...
متن کاملABC Transport Proteins in Cardiovascular Disease-A Brief Summary.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were init...
متن کاملABCC1: a gateway for pharmacological compounds to the ischaemic brain.
By preventing access of drugs to the CNS, the blood-brain barrier hampers developments in brain pharmacotherapy. Strong efforts are currently being made to identify drugs that accumulate more efficaciously in ischaemic brain tissue. We identified an ATP-binding cassette (ABC) transporter, ABCC1, which is expressed on the abluminal surface of the brain capillary endothelium and mildly downregula...
متن کاملTrametinib modulates cancer multidrug resistance by targeting ABCB1 transporter
Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR med...
متن کاملThe molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1).
The overexpression of multidrug resistance protein 1 (MDR1) and multidrug resistance protein 1 (MRP1) gene products is a major cause of multidrug resistance in cancer cells. A recent study suggested that disulfiram, a drug used to treat alcoholism, might act as a modulator of P-glycoprotein. In this study, we investigated the molecular and chemical basis of disulfiram as a multidrug resistance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2012