Forecasting Crude Oil Prices Using Wavelet Neural Networks

نویسندگان

  • A. Alexandridis
  • E. Livanis
چکیده

According to International Energy Outlook 2007 the total world demand of energy is projected to increase through 2030 about 95% for the non-OECD region and 24% for OECD nations. Crude oil is one of the most critical energy commodities while with coal and natural gas are projected to provide roughly the 86% share of the total US primary energy supply in 2030. In this paper, we use wavelet neural networks to forecast monthly West Texas Intermediate (WTI) crude oil spot prices. As explanatory variables we consider price lags, the producer price index for petroleum and the world production of crude oil. The data are provided by the Energy Information Administration (EIA). The proposed model is used to forecast in-sample and out-of-sample. We forecast one, three and six month future prices of crude oil and we compare our estimates with the EIA’s STEO econometric forecasting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysing the Dependency of Exchange Rate on Crude oil Price with Wavelet Networks: Evidence from India

The crude oil prices as well as the effective exchange rate of the dollar are both time series and non -stationary as well. In this paper, we investigate the relationship between real effective exchange rate and crude oil prices by hybrid wavelet network. We use a simple Multi-layer Perceptron Neural Network (MLPNN) based wavelet decomposition to analyse the relatio nship between real effective...

متن کامل

Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP

        This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...

متن کامل

Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks

Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autor...

متن کامل

Compumetric Forecasting of Crude Oil Prices

This paper contains short term monthly forecasts of crude oil prices using compumetric methods. Compumetric forecasting methods are ones that use computers to identify the underlying model that produces the forecast. Typically, forecasting models are designed or specified by humans rather than machines. Compumetric methods are applied to determine whether models they provide produce reliable fo...

متن کامل

Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into severa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008