Diffusive, Synaptic, and Synergetic Coupling: An Evaluation Through In-Phase and Antiphase Rhythmic Movements.

نویسندگان

  • D. Sternad
  • E. L. Amazeen
  • M. T. Turvey
چکیده

The in-phase and antiphase patterns of interlimb l:1 frequency locking were contrasted with respect to models of coordination dynamics in biological movement systems that are based on diffusive coupling, synaptic coupling, and synergetic principles. Predictions were made from each model concerning the stable relative phase phi between the rhythmic units, its standard deviation SDphi and the self-chosen coupled frequency omegasubc;. The experimental task involved human subjects oscillating two handheld pendulums either in-phase or antiphase. The eigenfrequencies of the two hand-pendulum systems were manipulated by varying the length and mass of each pendulum individually. Relative to an eigenfrequency difference of Delta equal to zero, |Deltaomega| > 0 displaced phi from phi = 0 and phi = pi, and amplified SDphi. omegasubc; decreased with |Deltaomega|. Both the displacement of phi and SDphi were greater in the antiphase mode. Additionally, the displacement of phi increased more sharply with |Delta| for antiphase than for in-phase coordination. In contrast, omegasubc; was identical for the two coordination modes. Of the models of interlimb coordination dynamics, the synergetic model was the most successful in addressing the pattern of dependencies of phi and SDphi. The specific forms of the functions relating omegasubc; and phi to Deltaomega pose challenges for all three models, however

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Model for Rhythmic and Discrete Movements in Uni- and Bimanual Coordination

Current research on discrete and rhythmic movements differs in both experimental procedures and theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central pattern generators (CPGs). In contrast, models of discrete movements often employ optimization principles, thereby refl...

متن کامل

Neural networks for the coordination of the hands in time.

Without practice, bimanual movements can typically be performed either in phase or in antiphase. Complex temporal coordination, e.g., during movements at different frequencies with a noninteger ratio (polyrhythms), requires training. Here, we investigate the organization of the neural control systems for in-phase, antiphase, and polyrhythmic coordination using functional magnetic resonance imag...

متن کامل

Agency and Rhythmic Coordination: Are We Naught but Moving Dots?

There is contention in perceptual-motor research concerning the degree to which observing biological and non-biological movements have equivalent effects on movement production. This issue results from the proposal that action observation and production share neural resources (i.e., mirror neurons) particularly sensitive to actions performed by other ‘agents’ (i.e., beings with goals/intentions...

متن کامل

Unraveling interlimb interactions underlying bimanual coordination.

Three sources of interlimb interactions have been postulated to underlie the stability characteristics of bimanual coordination but have never been evaluated in conjunction: integrated timing of feedforward control signals, phase entrainment by contralateral afference, and timing corrections based on the perceived error of relative phase. In this study, the relative contributions of these inter...

متن کامل

Effect of transcranial magnetic stimulation on bimanual movements.

Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of "resetting index" (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of motor behavior

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 1996