Analytic Cycles and Vector Bundles on Non-Compact Algebraic Varieties*
نویسندگان
چکیده
A. Orders of Growth on Algebraic Varieties . . . . . . . . . . . 4 w 1. Review of the Classical Theory . . . . . . . . . . . . . 4 w 2. Generalization to Algebraic Varieties . . . . . . . . . . . 6 w 3. Exhaustion Functions and K~ihler Metrics on Special Affine Varieties . . . . . . . . . . . . . . . . . . . . . . . 9 84. Order of Growth of Analytic Sets . . . . . . . . . . . . 13 w 5. Order of Growth of Holomorphic Mappings; the First Main Theorem of Nevanlinna Theory . . . . . . . . . . . . . 15 w 6. Orders of Growth of Holomorphic Vector Bundles . . . . . 17
منابع مشابه
Mt822: Introduction to Algebraic Geometry
1. Algebraic varieties 2 1.1. Affine varieties 2 1.2. Projective varieties 2 1.3. Zariski topology 3 1.4. Algebraic geometry and analytic geometry 3 1.5. Singular varieties 3 1.6. Ideals 4 1.7. Regular functions and maps 5 2. Sheaves and cohomology 6 2.1. The Mittag-Leffler problem 7 2.2. Sheaves 7 2.3. Maps of sheaves 8 2.4. Stalks and germs 10 2.5. Cohomology of sheaves 11 3. Vector bundles, ...
متن کاملModuli Spaces of Vector Bundles over a Klein Surface
A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S...
متن کاملVector bundles on contractible smooth schemes
We discuss algebraic vector bundles on smooth k-schemes X contractible from the standpoint of A-homotopy theory; when k = C, the smooth manifolds X(C) are contractible as topological spaces. The integral algebraic K-theory and integral motivic cohomology of such schemes are that of Spec k. One might hope that furthermore, and in analogy with the classification of topological vector bundles on m...
متن کاملVector Bundles and Brill–Noether Theory
After a quick review of the Picard variety and Brill–Noether theory, we generalize them to holomorphic rank-two vector bundles of canonical determinant over a compact Riemann surface. We propose several problems of Brill–Noether type for such bundles and announce some of our results concerning the Brill–Noether loci and Fano threefolds. For example, the locus of rank-two bundles of canonical de...
متن کاملEquivariant Vector Bundles on Certain Affine G-Varieties
We give a concrete description of the category of G-equivariant vector bundles on certain affine G-varieties (where G is a reductive linear algebraic group) in terms of linear algebra data.
متن کامل