Functionalization of graphene using deep eutectic solvents

نویسندگان

  • Maan Hayyan
  • Ali Abo-Hamad
  • Mohammed AbdulHakim AlSaadi
  • Mohd Ali Hashim
چکیده

Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of deep eutectic solvents in preparation of nanoparticles TiO2

Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...

متن کامل

Effects of deep eutectic solvents in preparation of nanoparticles TiO2

Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...

متن کامل

Electrochemical exfoliation of graphite in quaternary ammonium-based deep eutectic solvents: a route for the mass production of graphane.

We demonstrate a facile and scalable electrochemical approach to exfoliate graphite, which permits in situ hydrogenation of the resultant graphene via a solvated NR(4+) graphite compound in quaternary ammonium-based deep eutectic solvents. Spectroscopic studies reveal the presence of sp(3) C-H bonds in the hydrogenated graphene. The resulting materials consist of micrometre-sized and predominan...

متن کامل

High Catalytic Ability of Fe3O4/EDTA Magnetic Nanocatalyst in Comparison with Various Deep Eutectic Solvents for One-Pot Synthesis of 4H-Pyrans

In this work, various 3-cyano-4-aryl-4H-pyran derivatives were prepared efficiently through a one-pot,multicomponent synthesis between aromatic aldehyde, malononitrile and acetophenone derivativesor ethyl acetoacetate using Fe3O4/EDTA magnetic nanocatalyst and ethanol as solvent. The reactionswere completed at room temperature in 10 min using 5 mg of catalyst and 2 mL of solvent to prepare1 mmo...

متن کامل

Noncovalent functionalization of graphene with end-functional polymers†

Stable dispersion of reduced graphene in various organic solvents was achieved via noncovalent functionalization with amine-terminated polymers. An aqueous dispersion of reduced graphene was prepared by chemical reduction of graphene oxide in aqueous media and was vacuum filtered to generate reduced graphene sheets. Good solvents and nonsolvents for the dried reduced graphene were evaluated usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015