Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity
نویسندگان
چکیده
In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.
منابع مشابه
نقش دوگانه متیل جاسمونات بر عملکردهای فیزیولوژیک در گیاه سویا (Glycine max L.)
Abstract: Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), are naturally occurring plant growth regulators, which can affect many physiological and biochemical processes in plants. In present investigation, the effects of methyl jasmonate (0, 1, 10, 100 and 500µM) on some physiological and antioxidative responses in soybean (Glycine max L.) plants were studied. Under MeJA (1 and ...
متن کاملEffect of Jasmonic Acid on Physiological and Phytochemical Attributes and Antioxidant Enzymes Activity in Safflower (Carthamus tinctorius L.) under Water Deficient
Background: Safflower (Carthamus tinctorius L.), is an important medicinal plant of Asteraceae family, which is a rich source of pharmaceutically active compounds including phenols, flavonoids and fatty acids. In traditional medicine this plant has been used as an herbal medicine to treat various diseases. Objective: The aim of this study was to evaluate the role of jasmonic acid to protect saf...
متن کاملRhizophagus irregularis regulates antioxidant activity and gene expression under cadmium toxicity in Medicago sativa
Cadmium (Cd) is a phytotoxic heavy metal (HM) that can induce generation of reactive oxygen species (ROS). Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators that help to mitigate HM-derived oxidative stress. The objective of this study was to assess AM fungus Rhizophagus irregularis on changes in enzymatic activity and transcription of antioxidants of Medicago sativa to Cd s...
متن کاملAMELIORATION OF NICKEL TOXICITY IN SOYBEAN PLANTS BY GIBBERELLIN AND ASCORBIC ACID
The interactive effects of nickel (Ni) and ascorbic acid (AsA) and gibberellin (GA3) on soybean seedlings (Glycine max L. cv. Union × Elf) were examined. Seven-day old hydroponically-grown seedlings were exposed to NiCl2, 6H2O (0.5 mM), either with or without AsA (1 mM) or GA3 (0.05 mM) or AsA (1 mM) plus GA3 (0.05 mM), for five days. Nickel toxicity symptoms, such as formation of reddish-brown...
متن کاملEffect of Polyethylene Glycol Induced Drought Stress on Physio-hormonal Attributes of Soybean
Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% & 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growt...
متن کامل