Removing Even Crossings, Continued

نویسندگان

  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič
چکیده

In this paper we investigate how certain results related to the HananiTutte theorem can be lifted to orientable surfaces of higher genus. We give a new simple, geometric proof that the weak Hanani-Tutte theorem is true for higher-genus surfaces. We extend the proof to prove that bipartite generalized thrackles in a surface S can be embedded in S. We also show that a result of Pach and Tóth that allows the redrawing of a graph removing intersections on even edges remains true on highergenus surfaces. As a consequence, we can conclude that crS(G), the crossing number of the graph G on surface S, is bounded by 2 ocrS(G) , where ocr(G)S is the odd crossing number of G on surface S. Finally, we begin an investigation of optimal crossing configurations for which ocr = cr.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing Independently Even Crossings

We show that cr(G) ≤ (2 iocr(G) 2 ) settling an open problem of Pach and Tóth [5,1]. Moreover, iocr(G) = cr(G) if iocr(G) ≤ 2.

متن کامل

Removing Even Crossings on Surfaces

We give a new, topological proof that the weak Hanani-Tutte theorem is true on orientable surfaces and extend the result to nonorientable surfaces. That is, we show that if a graph G cannot be embedded on a surface S, then any drawing of G on S must contain two edges that cross an odd number of times. We apply the result and proof techniques to obtain new and old results about generalized thrac...

متن کامل

Distribution of Crossings, Nestings and Alignments of Two Edges in Matchings and Partitions

We construct an involution on set partitions which keeps track of the numbers of crossings, nestings and alignments of two edges. We derive then the symmetric distribution of the numbers of crossings and nestings in partitions, which generalizes a recent result of Klazar and Noy in perfect matchings. By factorizing our involution through bijections between set partitions and some path diagrams ...

متن کامل

Ordering Metro Lines by Block Crossings

A problem that arises in drawings of transportation networks is to minimize the number of crossings between different transportation lines. While this can be done efficiently under specific constraints, not all solutions are visually equivalent. We suggest merging single crossings into block crossings, that is, crossings of two neighboring groups of consecutive lines. Unfortunately, minimizing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006