Analysis of carbon and nitrogen dynamics in riparian soils: model development.
نویسندگان
چکیده
The quality of riparian soils and their ability to buffer contaminant releases to aquifers and streams are connected intimately to moisture content and nutrient dynamics, in particular of carbon (C) and nitrogen (N). A multi-compartment model-named the Riparian Soil Model (RSM)-was developed to help investigate the influence and importance of environmental parameters, climatic factors and management practices on soil ecosystem functioning in riparian areas. The model improves existing tools, in particular regarding its capability to simulate a wide range of temporal scales, from days to centuries, along with its ability to predict the concentration and vertical distribution of dissolved organic matter (DOM). It was found that DOM concentration controls the amount of soil organic matter (SOM) stored in the soil as well as the respiration rate. The moisture content was computed using a detailed water budget approach, assuming that within each time step all the water above field capacity drains to the layer underneath, until it becomes fully saturated. A mass balance approach was also used for nutrient transport, whereas the biogeochemical reaction network was developed as an extension of an existing C and N turnover model. Temperature changes across the soil profile were simulated analytically, assuming periodic temperature changes in the topsoil. To verify the consistency of model predictions and to illustrate its capabilities, a synthetic but realistic soil profile in a deciduous forest was simulated. Model parameters were taken from the literature, and model predictions were consistent with experimental observations for a similar scenario. Modelling results stressed the importance of environmental conditions on SOM cycling in soils. The mineral and organic C and N stocks fluctuate at different time scales in response to oscillations in climatic conditions and vegetation inputs/uptake.
منابع مشابه
Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone
[1] Riparian ecosystems are characterized by spatial and temporal heterogeneity in physical and biological attributes, with consequences for nutrient cycling. We investigated the responses of carbon (C) and nitrogen (N) cycling processes to the hydrogeomorphic template in the riparian zone of the San Pedro River, Arizona, a large (catchment area !11,500 km), free-flowing, semiarid river. Over a...
متن کاملAnalysis of carbon and nitrogen dynamics in riparian soils: model validation and sensitivity to environmental controls.
The Riparian Soil Model (RSM) of Brovelli et al. (2012) was applied to study soil nutrient turnover in a revitalized section of the Thur River, North-East Switzerland. In the present work, the model was calibrated on field experimental data, and satisfactorily reproduced soil respiration, organic matter stocks and inorganic nitrogen fluxes. Calibrated rates were in good agreement with the range...
متن کاملGroundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network.
Riparian vegetation research has traditionally focused on channel-related processes because riparian areas are situated on the edge of aquatic ecosystems and are therefore greatly affected by the flow regime of streams and rivers. However, due to their low topographic position in the landscape, riparian areas receive significant inputs of water and nutrients from uplands. These inputs may be im...
متن کاملIn situ ground water denitrification in stratified, permeable soils underlying riparian wetlands.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decli...
متن کاملDifferential Controls of Denitrification in Riparian Zones and Streams along an Urban to Exurban Gradient
The large increase in impervious surface cover due to urbanization leads to “flashier” storm flows and increased runoff. This altered hydrology causes channel incision in urban stream channels and lower water tables in the riparian (next to the stream) zone. In turn, these physical changes alter many stream processes, including denitrification. Denitrification is the anaerobic microbial process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 429 شماره
صفحات -
تاریخ انتشار 2012