The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish.
نویسندگان
چکیده
Being ectothermic, fish body temperature generally depends on ambient water temperature. Thus, ambient temperature might affect various sensory systems, including hearing, as a result of metabolic and physiological processes. However, the maintenance of sensory functions in a changing environment may be crucial for an animal's survival. Many fish species rely on hearing for acoustic orientation and communication. In order to investigate the influence of temperature on the auditory system, channel catfish Ictalurus punctatus was chosen as a model for a eurytherm species and the tropical catfish Pimelodus pictus as a model for a stenotherm fish. Hearing sensitivity was measured with animals acclimated or unacclimated to different water temperatures. Ambient water temperature significantly influenced hearing thresholds and the shape of auditory evoked potentials, especially at higher frequencies in I. punctatus. Hearing sensitivity of I. punctatus was lowest at 10 degrees C and increased by up to 36 dB between 10 degrees C and 26 degrees C. Significant differences were also revealed between acclimated and unacclimated animals after an increase in water temperature but not a decrease. By contrast, differences in hearing thresholds were smaller in P. pictus, even if a similar temperature difference (8 degrees C) was considered. However, P. pictus showed a similar trend as I. punctatus in exhibiting higher hearing sensitivity at the highest tested temperature, especially at the highest frequency tested. The results therefore suggest that the functional temperature dependence of sensory systems may differ depending upon whether a species is physiologically adapted to tolerate a wide or narrow temperature range.
منابع مشابه
Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes.
Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the h...
متن کاملTranscriptomic responses to environmental temperature in eurythermal and stenothermal fishes.
Ectothermic species like fishes differ greatly in the thermal ranges they tolerate; some eurythermal species may encounter temperature ranges in excess of 25°C, whereas stenothermal species in polar and tropical waters live at essentially constant temperatures. Thermal specialization comes with fitness trade-offs and as temperature increases due to global warming, the physiological basis of spe...
متن کاملTemperature-dependent pH regulation in eurythermal and stenothermal marine fish: an interspecies comparison
Temperature-induced pH changes in white muscle tissue of three eelpout populations with different levels of eurythermy (the cold stenothermal Antarctic species Pachycara brachycephalum and the temperate eelpout Zoarces viviparus from the North Sea and the Baltic Sea) were monitored online by use of in vivo P-NMR in unrestrained, unanaesthetized fish. An intracellular pH (pHi) change of around 0...
متن کاملEffects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)
BACKGROUND In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. METHODOLOGY/PRINCIPAL FINDINGS...
متن کاملStructural and kinetic characterization of myoglobins from eurythermal and stenothermal fish species.
Teleost myoglobin (Mb) proteins from four fish species inhabiting different temperature environments were used to investigate the relationship between protein function and thermal stability. Mb was isolated from yellowfin tuna (homeothermal warm), mackerel (eurythermal warm), and the Antarctic teleost Notothenia coriiceps (stenothermal cold). Zebrafish (stenothermal tropical) myoglobin was expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 19 شماره
صفحات -
تاریخ انتشار 2009