In silico analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate

نویسندگان

  • Hang Li
  • Mingshun Li
  • Yinyan Huang
  • Christopher Rensing
  • Gejiao Wang
چکیده

In order to construct a more universal model for understanding the genetic requirements for bacterial AsIII oxidation, an in silico examination of the available sequences in the GenBank was assessed and revealed 21 conserved 5-71 kb arsenic islands within phylogenetically diverse bacterial genomes. The arsenic islands included the AsIII oxidase structural genes aioBA, ars operons (e.g., arsRCB) which code for arsenic resistance, and pho, pst, and phn genes known to be part of the classical phosphate stress response and that encode functions associated with regulating and acquiring organic and inorganic phosphorus. The regulatory genes aioXSR were also an island component, but only in Proteobacteria and orientated differently depending on whether they were in α-Proteobacteria or β-/γ-Proteobacteria. Curiously though, while these regulatory genes have been shown to be essential to AsIII oxidation in the Proteobacteria, they are absent in most other organisms examined, inferring different regulatory mechanism(s) yet to be discovered. Phylogenetic analysis of the aio, ars, pst, and phn genes revealed evidence of both vertical inheritance and horizontal gene transfer (HGT). It is therefore likely the arsenic islands did not evolve as a whole unit but formed independently by acquisition of functionally related genes and operons in respective strains. Considering gene synteny and structural analogies between arsenate and phosphate, we presumed that these genes function together in helping these microbes to be able to use even low concentrations of phosphorus needed for vital functions under high concentrations of arsenic, and defined these sequences as the arsenic islands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive of arsenate and phosphate on arsenic-induced oxidative stress in root of Isatis cappadocica Desv.

In present study, growth, arsenic accumulation, and antioxidant responses in root of Isatis cappadocica were investigated in response to application of arsenate and phosphate. Reduction in root dry weights was significant with 1200 µM arsenate and 5 µM phosphate treatments. Phosphate had a steady effect on root dry weight improvement, especially in high arsenate treatments ≥ 200 μM. As concentr...

متن کامل

Genomic Evidence Reveals the Extreme Diversity and Wide Distribution of the Arsenic-Related Genes in Burkholderiales

So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbor...

متن کامل

Structural and Functional Consequences of Phosphate–Arsenate Substitutions in Selected Nucleotides: DNA, RNA, and ATP

A recent finding of a bacterial strain (GFAJ-1) that can rely on arsenic instead of phosphorus raised the questions of if and how arsenate can replace phosphate in biomolecules that are essential to sustain cell life. Apart from questions related to chemical stability, there are those of the structural and functional consequences of phosphate-arsenate substitutions in vital nucleotides in GFAJ1...

متن کامل

Life and death with arsenic

Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that...

متن کامل

Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013